Superhigh Coulombic Efficiency Lithium-Sulfur Batteries Enabled by In Situ Coating Lithium Sulfide with Polymerizable Electrolyte Additive

被引:74
作者
Geng, Chuannan [1 ,2 ,3 ]
Qu, Wenjia [1 ,4 ]
Han, Zhiyuan [2 ]
Wang, Li [1 ,3 ,4 ]
Lv, Wei [2 ]
Yang, Quan-Hong [1 ,3 ,4 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Sch Chem Engn & Technol, Tianjin Key Lab Adv Carbon & Electrochem Energy St, Tianjin 300072, Peoples R China
[2] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Tsinghua Shenzhen Int Grad Sch, Engn Lab Functionalized Carbon Mat, Shenzhen 518055, Peoples R China
[3] Haihe Lab Sustainable Chem Transformat, Tianjin 300192, Peoples R China
[4] Joint Sch Natl Univ Singapore, Tianjin Univ, Int Campus Tianjin Univ, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
catalysis; interfacial coating; Li2S cathodes; lithium-sulfur batteries; organosulfides; ANODE-FREE; CATHODE; CATALYSIS;
D O I
10.1002/aenm.202204246
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The polysulfide shuttling and electrode structure destruction caused by heterogeneous conversion reactions are the fundamental causes of the poor reversibility of high-energy-density lithium-sulfur (Li-S) batteries. The most direct manifestation is the unsatisfactory low Coulombic efficiency (CE). Herein the importance of CE in evaluating Li-S batteries is highlighted and a remedy is presented for such low efficiencies by in situ coating lithium sulfide (Li2S), as the cathode, with polymerizable electrolyte additives, where trithiocyanuric acid trilithium salt (TTCA-Li) is employed for a typical demonstration. The involved reaction catalytically decreases the initial overpotential of Li2S, and the produced coating confines the shuttling of lithium polysulfides, thus inhibiting the redistribution of sulfur species and active sulfur loss upon cycling. The prototype full cell where the coated Li2S cathode couples with the Li anode has an extremely high CE of over 99.5%, while, in a Li-free cell, the Li2S cathode well matches the lithiated silicon anode in a low N/P ratio of 1.2. This approach shows its practicality and generality through a pouch cell demonstration with a practically high Li2S loading and the extension to elemental sulfur-based batteries by injecting the TTCA-Li additives into cycling cells.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Nanosized Li2S-based cathodes derived from MoS2 for high-energy density Li-S cells and Si-Li2S full cells in carbonate-based electrolyte [J].
Balach, Juan ;
Jaumann, Tony ;
Giebeler, Lars .
ENERGY STORAGE MATERIALS, 2017, 8 :209-216
[2]   Lithium-Sulfur Batteries: Attaining the Critical Metrics [J].
Bhargav, Amruth ;
He, Jiarui ;
Gupta, Abhay ;
Manthiram, Arumugam .
JOULE, 2020, 4 (02) :285-291
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/NMAT3191, 10.1038/nmat3191]
[4]   Nanostructured Li2S-C Composites as Cathode Material for High-Energy Lithium/Sulfur Batteries [J].
Cai, Kunpeng ;
Song, Min-Kyu ;
Cairns, Elton J. ;
Zhang, Yuegang .
NANO LETTERS, 2012, 12 (12) :6474-6479
[5]   1000 Wh L-1 lithium-ion batteries enabled by crosslink-shrunk tough carbon encapsulated silicon microparticle anodes [J].
Chen, Fanqi ;
Han, Junwei ;
Kong, Debin ;
Yuan, Yifei ;
Xiao, Jing ;
Wu, Shichao ;
Tang, Dai-Ming ;
Deng, Yaqian ;
Lv, Wei ;
Lu, Jun ;
Kang, Feiyu ;
Yang, Quan-Hong .
NATIONAL SCIENCE REVIEW, 2021, 8 (09)
[6]   Li2S-based anode-free full batteries with modified Cu current collector [J].
Chen, Jie ;
Xiang, Jingwei ;
Chen, Xin ;
Yuan, Lixia ;
Li, Zhen ;
Huang, Yunhui .
ENERGY STORAGE MATERIALS, 2020, 30 (30) :179-186
[7]   A New Hydrophilic Binder Enabling Strongly Anchoring Polysulfides for High-Performance Sulfur Electrodes in Lithium-Sulfur Battery [J].
Chen, Wei ;
Lei, Tianyu ;
Qian, Tao ;
Lv, Weiqiang ;
He, Weidong ;
Wu, Chunyang ;
Liu, Xuejun ;
Liu, Jie ;
Chen, Bo ;
Yan, Chenglin ;
Xiong, Jie .
ADVANCED ENERGY MATERIALS, 2018, 8 (12)
[8]   Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques [J].
Geng, Chuannan ;
Hua, Wuxing ;
Wang, Dawei ;
Ling, Guowei ;
Zhang, Chen ;
Yang, Quan-Hong .
SUSMAT, 2021, 1 (01) :51-65
[9]   Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery [J].
Guo, Wei ;
Zhang, Wanying ;
Si, Yubing ;
Wang, Donghai ;
Fu, Yongzhu ;
Manthiram, Arumugam .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Rationally Design a Sulfur Cathode with Solid-Phase Conversion Mechanism for High Cycle-Stable Li-S Batteries [J].
He, Bin ;
Rao, Zhixiang ;
Cheng, Zexiao ;
Liu, Dongdong ;
He, Danqi ;
Chen, Jie ;
Miao, Ziyun ;
Yuan, Lixia ;
Li, Zhen ;
Huang, Yunhui .
ADVANCED ENERGY MATERIALS, 2021, 11 (14)