Inverse of Divergence and Homogenization of Compressible Navier-Stokes Equations in Randomly Perforated Domains

被引:8
作者
Bella, Peter [1 ]
Oschmann, Florian [2 ]
机构
[1] TU Dortmund, Fak Math, Vogelpothsweg 87, D-44227 Dortmund, Germany
[2] Akad Ved Ceske Republ, Matemat Ustav, Zitna 25, Prague 1, Czech Republic
关键词
MINIMAL ASSUMPTIONS; VOLUME DISTRIBUTION; TINY HOLES; DECOMPOSITION; OPERATOR; SIZE;
D O I
10.1007/s00205-023-01847-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the behavior of weak solutions to compressible viscous fluid flows in a bounded domain in R-3, randomly perforated by tiny balls with random size. Assuming the radii of the balls scale like epsilon(alpha), alpha > 3, with epsilon denoting the average distance between the balls, the problem homogenize to the same limiting equation. Our main contribution is a construction of the Bogovski(SIC) operator, uniformly in epsilon, without any assumptions on the minimal distance between the balls.
引用
收藏
页数:29
相关论文
共 38 条
[1]   Solutions of the divergence operator on John domains [J].
Acosta, Gabriel ;
Duran, Ricardo G. ;
Muschietti, Maria A. .
ADVANCES IN MATHEMATICS, 2006, 206 (02) :373-401
[2]  
ALLAIRE G, 1991, ARCH RATION MECH AN, V113, P209, DOI [10.1007/BF00375065, 10.1007/BF00375066]
[4]  
Allaire G., 1989, ASYMPTOTIC AANAL, V2, P203, DOI [DOI 10.3233/ASY-1989-2302, 10.3233/ASY-1989-2302]
[5]  
Beliaev AY, 1996, COMMUN PUR APPL MATH, V49, P1, DOI 10.1002/(SICI)1097-0312(199601)49:1<1::AID-CPA1>3.0.CO
[6]  
2-J
[7]  
Bogovskii M.E., 1980, AKAD NAUK SSSR SIBIR, P5
[8]  
Cioranescu D., 1982, RES NOTES MATH, V70, P425
[9]  
CONCA C, 1988, RAIRO-MATH MODEL NUM, V22, P561
[10]   THE INVERSE OF THE DIVERGENCE OPERATOR ON PERFORATED DOMAINS WITH APPLICATIONS TO HOMOGENIZATION PROBLEMS FOR THE COMPRESSIBLE NAVIER-STOKES SYSTEM [J].
Diening, Lars ;
Feireisl, Eduard ;
Lu, Yong .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (03) :851-868