Local characteristic decomposition based central-upwind scheme

被引:9
|
作者
Chertock, Alina [1 ]
Chu, Shaoshuai [2 ]
Herty, Michael [3 ]
Kurganov, Alexander [4 ,5 ]
Lukacova-Medvid'ova, Maria [6 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[3] Rhein Westfal TH Aachen, Dept Math, D-52056 Aachen, Germany
[4] Southern Univ Sci & Technol, Dept Math, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
[6] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Local characteristic decomposition; Central-upwind schemes; Hyperbolic systems of conservative laws; Euler equations of gas dynamics; CENTRAL DIFFERENCE-SCHEMES; RIEMANN PROBLEM; TIME DISCRETIZATION; HYPERBOLIC SYSTEMS; WENO SCHEMES; RESOLUTION; COMPUTATION; FORMULATION; FLOW;
D O I
10.1016/j.jcp.2022.111718
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose novel less diffusive schemes for conservative one-and two-dimensional hyperbolic systems of nonlinear partial differential equations (PDEs). The main challenges in the development of accurate and robust numerical methods for the studied systems come from the complicated wave structures, such as shocks, rarefactions and contact discontinuities, arising even for smooth initial conditions. In order to reduce the diffusion in the original central-upwind schemes, we use a local characteristic decomposition procedure to develop a new class of central-upwind schemes. We apply the developed schemes to the one-and two-dimensional Euler equations of gas dynamics to illustrate the performance on a variety of examples. The obtained numerical results clearly demonstrate that the proposed new schemes outperform the original central-upwind schemes.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM
    Bryson, Steve
    Epshteyn, Yekaterina
    Kurganov, Alexander
    Petrova, Guergana
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (03): : 423 - 446
  • [22] New Low-Dissipation Central-Upwind Schemes
    Alexander Kurganov
    Ruixiao Xin
    Journal of Scientific Computing, 2023, 96
  • [23] Compressible simulations of bubble dynamics with central-upwind schemes
    Koukouvinis, Phoevos
    Gavaises, Manolis
    Georgoulas, Anastasios
    Marengo, Marco
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (02) : 129 - 140
  • [24] A well-balanced positivity-preserving central-upwind scheme for one-dimensional blood flow models
    Hernandez-Duenas, Gerardo
    Ramirez-Santiago, Guillermo
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (02) : 369 - 395
  • [25] Fifth-order A-WENO schemes based on the path-conservative central-upwind method
    Chu, Shaoshuai
    Kurganov, Alexander
    Na, Mingye
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 469
  • [26] Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms
    Chertock, A.
    Cui, S.
    Kurganov, A.
    Wu, T.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2015, 78 (06) : 355 - 383
  • [27] New Low-Dissipation Central-Upwind Schemes. Part II
    Chu, Shaoshuai
    Kurganov, Alexander
    Xin, Ruixiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [28] Semi-discrete central-upwind Rankine-Hugoniot schemes for hyperbolic systems of conservation laws
    Garg, Naveen Kumar
    Kurganov, Alexander
    Liu, Yongle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 428
  • [29] High-order central-upwind shock capturing scheme using a Boundary Variation Diminishing (BVD) algorithm
    Chamarthi, Amareshwara Sainadh
    Frankel, Steven H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 427
  • [30] Fifth-Order A-WENO Path-Conservative Central-Upwind Scheme for Behavioral Non-Equilibrium Traffic Models
    Chu, Shaoshuai
    Kurganov, Alexander
    Mohammadian, Saeed
    Zheng, Zuduo
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 33 (03) : 692 - 732