Local characteristic decomposition based central-upwind scheme

被引:9
|
作者
Chertock, Alina [1 ]
Chu, Shaoshuai [2 ]
Herty, Michael [3 ]
Kurganov, Alexander [4 ,5 ]
Lukacova-Medvid'ova, Maria [6 ]
机构
[1] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Southern Univ Sci & Technol, Dept Math, Shenzhen 518055, Peoples R China
[3] Rhein Westfal TH Aachen, Dept Math, D-52056 Aachen, Germany
[4] Southern Univ Sci & Technol, Dept Math, SUSTech Int Ctr Math, Shenzhen 518055, Peoples R China
[5] Southern Univ Sci & Technol, Guangdong Prov Key Lab Computat Sci & Mat Design, Shenzhen 518055, Peoples R China
[6] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
关键词
Local characteristic decomposition; Central-upwind schemes; Hyperbolic systems of conservative laws; Euler equations of gas dynamics; CENTRAL DIFFERENCE-SCHEMES; RIEMANN PROBLEM; TIME DISCRETIZATION; HYPERBOLIC SYSTEMS; WENO SCHEMES; RESOLUTION; COMPUTATION; FORMULATION; FLOW;
D O I
10.1016/j.jcp.2022.111718
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose novel less diffusive schemes for conservative one-and two-dimensional hyperbolic systems of nonlinear partial differential equations (PDEs). The main challenges in the development of accurate and robust numerical methods for the studied systems come from the complicated wave structures, such as shocks, rarefactions and contact discontinuities, arising even for smooth initial conditions. In order to reduce the diffusion in the original central-upwind schemes, we use a local characteristic decomposition procedure to develop a new class of central-upwind schemes. We apply the developed schemes to the one-and two-dimensional Euler equations of gas dynamics to illustrate the performance on a variety of examples. The obtained numerical results clearly demonstrate that the proposed new schemes outperform the original central-upwind schemes.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Novel local characteristic decomposition based path-conservative central-upwind schemes
    Chu, Shaoshuai
    Herty, Michael
    Kurganov, Alexander
    JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 524
  • [2] Hybrid Multifluid Algorithms Based on the Path-Conservative Central-Upwind Scheme
    Chertock, Alina
    Chu, Shaoshuai
    Kurganov, Alexander
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [3] Fifth-Order A-WENO Schemes Based on the Adaptive Diffusion Central-Upwind Rankine-Hugoniot Fluxes
    Wang, Bao-Shan
    Don, Wai Sun
    Kurganov, Alexander
    Liu, Yongle
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (01) : 295 - 314
  • [4] Modifying and Reducing Numerical Dissipation in A Two-Dimensional Central-Upwind Scheme
    Yu, Chi-Jer
    Liu, Chii-Tung
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2012, 4 (03) : 340 - 353
  • [5] New adaptive low-dissipation central-upwind schemes
    Chu, Shaoshuai
    Kurganov, Alexander
    Menshov, Igor
    APPLIED NUMERICAL MATHEMATICS, 2025, 209 : 155 - 170
  • [6] New Low-Dissipation Central-Upwind Schemes
    Kurganov, Alexander
    Xin, Ruixiao
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 96 (02)
  • [7] Numerical dissipation switch for two-dimensional central-upwind schemes
    Kurganov, Alexander
    Liu, Yongle
    Zeitlin, Vladimir
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 713 - 734
  • [8] ADAPTIVE CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM
    Epshteyn, Yekaterina
    Nguyen, Thuong
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (03) : 671 - 708
  • [9] Low-dissipation central-upwind schemes for compressible multifluids
    Chu, Shaoshuai
    Kurganov, Alexander
    Xin, Ruixiao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 518
  • [10] A POSITIVITY-PRESERVING CENTRAL-UPWIND SCHEME FOR ISENTROPIC TWO-PHASE FLOWS THROUGH DEVIATED PIPES
    Hernandez-Duenas, Gerardo
    Velasco-Garcia, Ulises
    Velasco-Hernandez, Jorge X.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (05): : 1433 - 1457