On MDS geometric Fq-linear Fqt-codes

被引:0
作者
Ren, Yuan [1 ]
Han, Dongchun [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Peoples R China
[2] Southwest Jiaotong Univ, Dept Math, Chengdu 610000, Peoples R China
基金
中国国家自然科学基金;
关键词
MDS codes; F-q-linear F-qt-codes; Algebraic geometry codes; Elliptic curves; MAIN CONJECTURE;
D O I
10.1016/j.disc.2022.113125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be a finite field and t be a positive integer. We first generalize the construction of algebraic-geometric codes to the setting of F-q-linear Fqt-codes. Then we show that such codes arising from the projective line yield MDS (resp. self-dual MDS) F-q-linear F-qt-codes (resp. when q is a power of 2). We also derive a tight upper bound for the maximal length of primitive MDS elliptic F-q-linear F-qt-codes with F-q-dimension k divided by t and satisfies 3 <= k/t <= q+1-2 root q/20 . (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 23 条
  • [1] [Anonymous], 1953, Math. Z, DOI [10.1007/BF01174162, DOI 10.1007/BF01174162]
  • [2] Cao YL, 2015, DESIGN CODE CRYPTOGR, V77, P153, DOI 10.1007/s10623-014-9994-9
  • [3] Cao YL, 2015, APPL ALGEBR ENG COMM, V26, P369, DOI 10.1007/s00200-015-0257-4
  • [4] Repeated root cyclic Fq-linear codes over Fql
    Cao, Yonglin
    Gao, Yun
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2015, 31 : 202 - 227
  • [5] Contribution to Munuera's problem on the main conjecture of geometric hyperelliptic MDS codes
    Chen, H
    Yau, SST
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (04) : 1349 - 1354
  • [6] Chen H., 1994, INT MATH RES NOTICES, V8, P313
  • [7] De Boer M. A., 1993, PROC AGCT, P23
  • [8] Dey BK, 2005, DESIGN CODE CRYPTOGR, V34, P89, DOI 10.1007/s10623-003-4196-x
  • [9] Geroldinger A., 2006, MG TXB PUR APPL MATH, V278
  • [10] Han D.C., 2020, PREPRINTS