An inexact primal-dual method with correction step for a saddle point problem in image debluring

被引:0
|
作者
Fang, Changjie [1 ,2 ]
Hu, Liliang [1 ,2 ]
Chen, Shenglan [1 ,2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Key Lab Intelligent Anal & Decis Complex Syst, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Primal-dual method; Inexact extended proximal operators; Convergence rate; Prediction and correction; Image deblurring; THRESHOLDING ALGORITHM; OPTIMIZATION; CONVERGENCE;
D O I
10.1007/s10898-022-01211-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we present an inexact primal-dual method with correction step for a saddle point problem by introducing the notations of inexact extended proximal operators with symmetric positive definite matrix D. Relaxing requirement on primal-dual step sizes, we prove the convergence of the proposed method. We also establish the O(1/N) convergence rate of our method in the ergodic sense. Moreover, we apply our method to solve TV-L-1 image deblurring problems. Numerical simulation results illustrate the efficiency of our method.
引用
收藏
页码:965 / 988
页数:24
相关论文
共 50 条
  • [1] An inexact primal–dual method with correction step for a saddle point problem in image debluring
    Changjie Fang
    Liliang Hu
    Shenglan Chen
    Journal of Global Optimization, 2023, 87 : 965 - 988
  • [2] A primal-dual method with linear mapping for a saddle point problem in image deblurring
    Xie, Zhipeng
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 42 : 112 - 120
  • [3] A partially inexact generalized primal-dual hybrid gradient method for saddle point problems with bilinear couplings
    Wang, Kai
    Yu, Jintao
    He, Hongjin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (05) : 3693 - 3719
  • [4] A partially inexact generalized primal-dual hybrid gradient method for saddle point problems with bilinear couplings
    Kai Wang
    Jintao Yu
    Hongjin He
    Journal of Applied Mathematics and Computing, 2023, 69 : 3693 - 3719
  • [5] Adaptive Parallel Primal-Dual Method for Saddle Point Problems
    Zhang, Xiayang
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2018, 11 (01) : 187 - 210
  • [6] A primal-dual prediction-correction algorithm for saddle point optimization
    He, Hongjin
    Desai, Jitamitra
    Wang, Kai
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 66 (03) : 573 - 583
  • [7] A Generalized Primal-dual Correction Method for Saddle-point Problems With a Nonlinear Coupling Operator
    Wang, Sai
    Gong, Yi
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2025, 23 (02) : 638 - 645
  • [8] On the convergence of an inexact primal-dual interior point method for linear programming
    Baryamureeba, V
    Steihaug, T
    LARGE-SCALE SCIENTIFIC COMPUTING, 2006, 3743 : 629 - 637
  • [9] A RELAXED PARAMETER CONDITION FOR THE PRIMAL-DUAL HYBRID GRADIENT METHOD FOR SADDLE-POINT PROBLEM
    Zhang, Xiayang
    Kong, Yuqian
    Liu, Shanshan
    Shen, Yuan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (03) : 1595 - 1610
  • [10] A REFINED PRIMAL-DUAL ALGORITHM FOR A SADDLE-POINT PROBLEM WITH APPLICATIONS TO IMAGING
    Li, Min
    Li, Xinxin
    Wu, Zhongming
    PACIFIC JOURNAL OF OPTIMIZATION, 2020, 16 (04): : 663 - 685