Future tropospheric ozone budget and distribution over east Asia under a net-zero scenario

被引:0
作者
Hou, Xuewei [1 ,4 ]
Wild, Oliver [2 ]
Zhu, Bin [1 ]
Lee, James [3 ,5 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Minist Educ KLME, Key Lab Meteorol Disaster,Sch Atmospher Phys, Nanjing, Peoples R China
[2] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
[3] Univ York, Dept Chem, York, N Yorkshire, England
[4] China Meteorol Adm Beijing LAC CMA, Key Lab Atmospher Chem, Beijing, Peoples R China
[5] Natl Ctr Atmospher Res, York, N Yorkshire, England
关键词
ATMOSPHERIC CHEMISTRY; AIR-QUALITY; SURFACE OZONE; LEVEL OZONE; MODEL; CLIMATE; EMISSIONS; TRANSPORT; ATTRIBUTION; CHINA;
D O I
10.5194/acp-23-15395-2023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Under future net-zero emission policies, reductions in emissions of ozone (O 3 ) precursors are expected to alter the temporal and spatial distributions of tropospheric O 3 . In this study, we quantify changes in the tropospheric O 3 budget and in the spatiotemporal distribution of surface O 3 in east Asia and the contributions of regional emissions, intercontinental transport and climate change between the present day and 2060 under a net-zero scenario using the NCAR Community Earth System Model (CESM) with online tagging of O 3 and its precursors. The results reveal that the global tropospheric O 3 burden is likely to decrease by more than 20 %, from 316 Tg in the present day to 247 Tg in 2060, under a net-zero scenario. The burden of stratospheric O 3 in the troposphere is expected to increase from 69 to 77 Tg. The mean lifetime of tropospheric O 3 is expected to increase by 2 d ( similar to 10 %). Changes in climate under a net-zero pathway are relatively small and only lead to small increases in tropospheric O 3 . Over eastern China, surface O 3 increases in winter due to the weakened titration of O 3 by NO associated with reduced anthropogenic NO emissions and due to enhanced stratospheric input. In summer, surface O 3 decreases by more than 30 ppbv, and peak concentrations shift from July to May. Local contributions from anthropogenic emissions to surface O 3 over east Asia are highest in summer but drop substantially, from 30 % to 14 %, under a net-zero scenario. The contribution of biogenic NO sources is enhanced and forms the dominant contributor to future surface O 3 , especially in summer ( similar to 40 %). This enhanced contribution is mainly due to the increased O 3 production efficiency under lower anthropogenic precursor emissions. Over eastern China, local anthropogenic contributions decrease from 50 % to 30 %. The decreases in surface O 3 are strongly beneficial and are more than sufficient to counteract the increases in surface O 3 observed in China over recent years. This study thus highlights the important co-benefits of net-zero policies that target climate change in addressing surface O 3 pollution over east Asia.
引用
收藏
页码:15395 / 15411
页数:17
相关论文
共 72 条
  • [1] On the impact of future climate change on tropopause folds and tropospheric ozone
    Akritidis, Dimitris
    Pozzer, Andrea
    Zanis, Prodromos
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (22) : 14387 - 14401
  • [2] Climate and air quality impacts due to mitigation of non-methane near-term climate forcers
    Allen, Robert J.
    Turnock, Steven
    Nabat, Pierre
    Neubauer, David
    Lohmann, Ulrike
    Olivie, Dirk
    Oshima, Naga
    Michou, Martine
    Wu, Tongwen
    Zhang, Jie
    Takemura, Toshihiko
    Schulz, Michael
    Tsigaridis, Kostas
    Bauer, Susanne E.
    Emmons, Louisa
    Horowitz, Larry
    Naik, Vaishali
    van Noije, Twan
    Bergman, Tommi
    Lamarque, Jean-Francois
    Zanis, Prodromos
    Tegen, Ina
    Westervelt, Daniel M.
    Le Sager, Philippe
    Good, Peter
    Shim, Sungbo
    O'Connor, Fiona
    Akritidis, Dimitris
    Georgoulias, Aristeidis K.
    Deushi, Makoto
    Sentman, Lori T.
    John, Jasmin G.
    Fujimori, Shinichiro
    Collins, William J.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (16) : 9641 - 9663
  • [3] Changes in anthropogenic precursor emissions drive shifts in the ozone seasonal cycle throughout the northern midlatitude troposphere
    Bowman, Henry
    Turnock, Steven
    Bauer, Susanne E.
    Tsigaridis, Kostas
    Deushi, Makoto
    Oshima, Naga
    O'Connor, Fiona M.
    Horowitz, Larry
    Wu, Tongwen
    Zhang, Jie
    Kubistin, Dagmar
    Parrish, David D.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (05) : 3507 - 3524
  • [4] The Brewer-Dobson circulation
    Butchart, Neal
    [J]. REVIEWS OF GEOPHYSICS, 2014, 52 (02) : 157 - 184
  • [5] Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model
    Butler, Tim
    Lupascu, Aurelia
    Nalam, Aditya
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (17) : 10707 - 10731
  • [6] TOAST 1.0: Tropospheric Ozone Attribution of Sources with Tagging for CESM 1.2.2
    Butler, Tim
    Lupascu, Aurelia
    Coates, Jane
    Zhu, Shuai
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (07) : 2825 - 2840
  • [7] Pathways of China's PM2.5 air quality 2015-2060 in the context of carbon neutrality
    Cheng, Jing
    Tong, Dan
    Zhang, Qiang
    Liu, Yang
    Lei, Yu
    Yan, Gang
    Yan, Liu
    Yu, Sha
    Cui, Ryna Yiyun
    Clarke, Leon
    Geng, Guannan
    Zheng, Bo
    Zhang, Xiaoye
    Davis, Steven J.
    He, Kebin
    [J]. NATIONAL SCIENCE REVIEW, 2021, 8 (12)
  • [8] Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing
    Cionni, I.
    Eyring, V.
    Lamarque, J. F.
    Randel, W. J.
    Stevenson, D. S.
    Wu, F.
    Bodeker, G. E.
    Shepherd, T. G.
    Shindell, D. T.
    Waugh, D. W.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (21) : 11267 - 11292
  • [9] The Community Earth System Model Version 2 (CESM2)
    Danabasoglu, G.
    Lamarque, J. -F.
    Bacmeister, J.
    Bailey, D. A.
    DuVivier, A. K.
    Edwards, J.
    Emmons, L. K.
    Fasullo, J.
    Garcia, R.
    Gettelman, A.
    Hannay, C.
    Holland, M. M.
    Large, W. G.
    Lauritzen, P. H.
    Lawrence, D. M.
    Lenaerts, J. T. M.
    Lindsay, K.
    Lipscomb, W. H.
    Mills, M. J.
    Neale, R.
    Oleson, K. W.
    Otto-Bliesner, B.
    Phillips, A. S.
    Sacks, W.
    Tilmes, S.
    Van Kampenhout, L.
    Vertenstein, M.
    Bertini, A.
    Dennis, J.
    Deser, C.
    Fischer, C.
    Fox-Kemper, B.
    Kay, J. E.
    Kinnison, D.
    Kushner, P. J.
    Larson, V. E.
    Long, M. C.
    Mickelson, S.
    Moore, J. K.
    Nienhouse, E.
    Polvani, L.
    Rasch, P. J.
    Strand, W. G.
    [J]. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2020, 12 (02)
  • [10] Ehhalt D, 2001, CLIMATE CHANGE 2001: THE SCIENTIFIC BASIS, P239