CYCLIC CODES OF LENGTH ps OVER Fpm[u] ⟨ue⟩

被引:0
作者
Hesari, Roghayeh Mohammadi [1 ]
Mohebbei, Masoumeh [1 ]
Rezaei, Rashid [1 ]
Samei, Karim [2 ]
机构
[1] Malayer Univ, Dept Math, Malayer, Iran
[2] Bu Ali Sina Univ, Dept Math, Hamadan, Iran
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2024年 / 39卷 / 01期
关键词
Key words and phrases. Chain ring; cyclic code; torsion code; ROOT CONSTACYCLIC CODES; NEGACYCLIC CODES;
D O I
10.4134/CKMS.c230057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
. Let Re = ⟨ue⟩ , where p is a prime number, e is a positive integer and ue = 0. In this paper, we first characterize the structure of cyclic codes of length ps over Re. These codes will be classified into 2e distinct types. Among other results, in the case that e = 4, the torsion codes of cyclic codes of length ps over R4 are obtained. Also, we present some examples of cyclic codes of length ps over Re.
引用
收藏
页码:31 / 43
页数:13
相关论文
共 10 条
  • [1] Cyclic codes over the rings Z2+uZ2 and Z2+uZ2+u2Z2
    Abualrub, Taher
    Siap, Irfan
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2007, 42 (03) : 273 - 287
  • [2] A class of repeated-root constacyclic codes over Fpm[u]/⟨ue⟩ of Type 2
    Cao, Yuan
    Cao, Yonglin
    Dinh, Hai Q.
    Fu, Fang-Wei
    Gao, Jian
    Sriboonchitta, Songsak
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2019, 55 : 238 - 267
  • [3] On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions
    Dinh, Hai Q.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 22 - 40
  • [4] Repeated-root constacyclic codes of prime power length over Fpm[u]/⟨ua⟩ and their duals
    Dinh, Hai Q.
    Dhompongsa, Sompong
    Sriboonchitta, Songsak
    [J]. DISCRETE MATHEMATICS, 2016, 339 (06) : 1706 - 1715
  • [5] Constacyclic codes of length ps over Fpm + uFpm
    Dinh, Hai Q.
    [J]. JOURNAL OF ALGEBRA, 2010, 324 (05) : 940 - 950
  • [6] Negacyclic codes of length 2s over Galois rings
    Dinh, HQ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) : 4252 - 4262
  • [7] Cyclic and negacyclic codes over finite chain rings
    Dinh, HQ
    López-Permouth, SR
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) : 1728 - 1744
  • [8] Some results on cyclic codes over Z(q)
    Gao, Jian
    Fu, Fang-Wei
    Xiao, Ling
    Bandi, Rama Krishna
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (04)
  • [9] Liu X., 2016, J. Math., V36
  • [10] SOME CLASSES OF REPEATED-ROOT CONSTACYCLIC CODES OVER Fpm + uFpm + u2Fpm
    Liu, Xiusheng
    Xu, Xiaofang
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (04) : 853 - 866