A Hyper-Network-Aided Approach for ISTA-based CSI Feedback in Massive MIMO systems

被引:0
|
作者
Zou, Yafei [1 ]
Hu, Zhengyang [1 ]
Zhang, Yiqing [1 ]
Xue, Jiang [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
来源
2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL | 2023年
关键词
Massive MIMO; CSI feedback; deep learning; hyper-network; model-driven; CHANNEL MODEL;
D O I
10.1109/VTC2023-Fall60731.2023.10333574
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate channel state information (CSI) is critical for achieving high performance in massive multiple input multiple output (MIMO) systems. While existing deep learning (DL) based methods have achieved notable success for CSI feedback in the frequency division duplex (FDD) mode, they typically learn one set of neural network (NN) parameters for all CSI. However, only one set of parameters restricts the representation power of the NN, resulting in the limited performance. In addition, the channel estimation error is usually considered with discrete levels among the researches of CSI feedback, which limits the performance when channel estimation errors are successive. To address these issues, we propose a model-driven DL method with sample-relevant dynamic parameters using hypernetworks and unfolding. The proposed method can generate the parameters of the task network distinctly for each CSI by a hyper-network, which improves the representation power and recovery performance of the task network. Additionally, instead of assuming each CSI has the same level of channel estimation error, the proposed method automatically adjusts task network parameters to account for different levels of channel estimation error, resulting in significant performance gains. The numerical experiments demonstrate the superiority of the proposed method in terms of performance and robustness.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] CSI Feedback Based on Complex Neural Network for Massive MIMO Systems
    Liu, Qingli
    Zhang, Zhenya
    Yang, Guoqiang
    Cao, Na
    Li, Mengqian
    IEEE ACCESS, 2022, 10 : 78414 - 78422
  • [2] Binary Neural Network Aided CSI Feedback in Massive MIMO System
    Lu, Zhilin
    Wang, Jintao
    Song, Jian
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (06) : 1305 - 1308
  • [3] A Learnable Optimization and Regularization Approach to Massive MIMO CSI Feedback
    Hu, Zhengyang
    Liu, Guanzhang
    Xie, Qi
    Xue, Jiang
    Meng, Deyu
    Gunduz, Deniz
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (01) : 104 - 116
  • [4] A Novel Deep Learning based CSI Feedback Approach for Massive MIMO Systems
    Li, Lun
    Wu, Hao
    Xiao, Huahua
    Liu, Lei
    Lu, Zhaohua
    Yu, Guanghui
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 56 - 60
  • [5] Sensing-aided CSI Feedback with Deep Learning for Massive MIMO Systems
    Zhang, Xudong
    Lu, Zhilin
    Wang, Jintao
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2282 - 2287
  • [6] MRFNet: A Deep Learning-Based CSI Feedback Approach of Massive MIMO Systems
    Hu, Zhengyang
    Guo, Jianhua
    Liu, Guanzhang
    Zheng, Hanying
    Xue, Jiang
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (10) : 3310 - 3314
  • [7] Knowledge-distillation-aided Lightweight Neural Network for Massive MIMO CSI Feedback
    Tang, Huaze
    Guo, Jiajia
    Matthaiou, Michail
    Wen, Chao-Kai
    Jin, Shi
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [8] Digital Twin Aided Massive MIMO: CSI Compression and Feedback
    Jiang, Shuaifeng
    Alkhateeb, Ahmed
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 3586 - 3591
  • [9] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [10] Dilated Convolution Based CSI Feedback Compression for Massive MIMO Systems
    Tang, Shunpu
    Xia, Junjuan
    Fan, Lisheng
    Lei, Xianfu
    Xu, Wei
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (10) : 11216 - 11221