CNN-LSTM MODELS COMBINED WITH ATTENTION MECHANISM FOR SHORT-TERM BUILDING HEATING LOAD PREDICTION

被引:0
|
作者
Lan, Kun [1 ]
Xin, Xin [2 ]
Fang, Songlin [1 ]
Cao, Pangong [1 ]
机构
[1] Xian Shiyou Univ, Sch Humanities, 18 East Sect Elect 2nd Rd, Xian 710065, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Bldg Serv Sci & Engn, 13 Yanta Rd, Xian 710055, Peoples R China
来源
JOURNAL OF GREEN BUILDING | 2023年 / 18卷 / 04期
关键词
Heating load prediction; Machine-learning model; CNN; LSTM; Attention mechanism; ENERGY; ANN;
D O I
10.3992/jgb.18.4.37
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Predicting the heating load of a building is critical for efficient system operation and cost reduction. Besides the time series, building load data also includes geographical context. It is challenging for the traditional time series model to represent the load data's time and spatial relations simultaneously. On the other hand, the dependence relationship between the long-time series is notoriously hard to describe in the conventional paradigm. This paper proposes a CNN-LSTM algorithm based on the attention mechanism, combining CNN-LSTM's capacity to concurrently capture temporal and spatial features with the ability of the attention mechanism to simulate long-term dependence. In addition, the heating load of a university in Xi 'an is adopted as a case study. Single CNN, LSTM models, and models based on attention mechanism, were used for comparison. The prediction results showed that the CNNLSTM model was more precise than a single CNN or LSTM model, and the global capture ability of the attention mechanism further increased the accuracy. Compared to the CNN-LSTM model, the AT-CNN-LSTM exhibited a 1.2% improvement in goodness-of-fit R2, a 25.9% drop in RMSE, a 25.4% decrease in CV-RMSE, and a 26.1% decline in MAE. In contrast, the R2 of the AT-CNN-LSTM model improved by 15.8% on average, RMSE reduced by 31.3%, CV-RMSE fell by 31.5%, and MAE decreased by 32.4% on average, compared to the single model. The paper's findings will provide a basis for selecting a high-precision prediction model for building load forecasting.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 50 条
  • [41] Short-term Load Forecasting Model Based on Attention-LSTM in Electricity Market
    Peng W.
    Wang J.
    Yin S.
    Dianwang Jishu/Power System Technology, 2019, 43 (05): : 1745 - 1751
  • [42] Improving Short-term Daily Streamflow Forecasting Using an Autoencoder Based CNN-LSTM Model
    Kumshe, Umar Muhammad Mustapha
    Abdulhamid, Zakariya Muhammad
    Mala, Baba Ahmad
    Muazu, Tasiu
    Muhammad, Abdullahi Uwaisu
    Sangary, Ousmane
    Ba, Abdoul Fatakhou
    Tijjani, Sani
    Adam, Jibril Muhammad
    Ali, Mosaad Ali Hussein
    Bello, Aliyu Uthman
    Bala, Muhammad Muhammad
    WATER RESOURCES MANAGEMENT, 2024, 38 (15) : 5973 - 5989
  • [43] Two-channel Attention Mechanism Fusion Model of Stock Price Prediction Based on CNN-LSTM
    Sun, Lin
    Xu, Wenzheng
    Liu, Jimin
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2021, 20 (05)
  • [44] Comparison of machine-learning models for predicting short-term building heating load using operational parameters
    Zhou, Yong
    Liu, Yanfeng
    Wang, Dengjia
    Liu, Xiaojun
    ENERGY AND BUILDINGS, 2021, 253
  • [45] Power Grid Load Forecasting Using a CNN-LSTM Network Based on a Multi-Modal Attention Mechanism
    Guo, Wangyong
    Liu, Shijin
    Weng, Liguo
    Liang, Xingyu
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [46] 2-D regional short-term wind speed forecast based on CNN-LSTM deep learning model
    Chen, Yaoran
    Wang, Yan
    Dong, Zhikun
    Su, Jie
    Han, Zhaolong
    Zhou, Dai
    Zhao, Yongsheng
    Bao, Yan
    ENERGY CONVERSION AND MANAGEMENT, 2021, 244
  • [47] Edible Mushroom Greenhouse Environment Prediction Model Based on Attention CNN-LSTM
    Huang, Shuanggen
    Liu, Quanyao
    Wu, Yan
    Chen, Minmin
    Yin, Hua
    Zhao, Jinhui
    AGRONOMY-BASEL, 2024, 14 (03):
  • [48] Prediction of reservoir water levels via an improved attention mechanism based on CNN - LSTM
    Li, Haoran
    Zhang, Lili
    Yao, Yunsheng
    Zhang, Yaowen
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [49] An Attention-Based CNN-LSTM Method for Effluent Wastewater Quality Prediction
    Li, Yue
    Kong, Bin
    Yu, Weiwei
    Zhu, Xingliang
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [50] Adaptive Bi-Directional LSTM Short-Term Load Forecasting with Improved Attention Mechanisms
    Yu, Kun
    ENERGIES, 2024, 17 (15)