CNN-LSTM MODELS COMBINED WITH ATTENTION MECHANISM FOR SHORT-TERM BUILDING HEATING LOAD PREDICTION

被引:0
|
作者
Lan, Kun [1 ]
Xin, Xin [2 ]
Fang, Songlin [1 ]
Cao, Pangong [1 ]
机构
[1] Xian Shiyou Univ, Sch Humanities, 18 East Sect Elect 2nd Rd, Xian 710065, Peoples R China
[2] Xian Univ Architecture & Technol, Sch Bldg Serv Sci & Engn, 13 Yanta Rd, Xian 710055, Peoples R China
来源
JOURNAL OF GREEN BUILDING | 2023年 / 18卷 / 04期
关键词
Heating load prediction; Machine-learning model; CNN; LSTM; Attention mechanism; ENERGY; ANN;
D O I
10.3992/jgb.18.4.37
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Predicting the heating load of a building is critical for efficient system operation and cost reduction. Besides the time series, building load data also includes geographical context. It is challenging for the traditional time series model to represent the load data's time and spatial relations simultaneously. On the other hand, the dependence relationship between the long-time series is notoriously hard to describe in the conventional paradigm. This paper proposes a CNN-LSTM algorithm based on the attention mechanism, combining CNN-LSTM's capacity to concurrently capture temporal and spatial features with the ability of the attention mechanism to simulate long-term dependence. In addition, the heating load of a university in Xi 'an is adopted as a case study. Single CNN, LSTM models, and models based on attention mechanism, were used for comparison. The prediction results showed that the CNNLSTM model was more precise than a single CNN or LSTM model, and the global capture ability of the attention mechanism further increased the accuracy. Compared to the CNN-LSTM model, the AT-CNN-LSTM exhibited a 1.2% improvement in goodness-of-fit R2, a 25.9% drop in RMSE, a 25.4% decrease in CV-RMSE, and a 26.1% decline in MAE. In contrast, the R2 of the AT-CNN-LSTM model improved by 15.8% on average, RMSE reduced by 31.3%, CV-RMSE fell by 31.5%, and MAE decreased by 32.4% on average, compared to the single model. The paper's findings will provide a basis for selecting a high-precision prediction model for building load forecasting.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 50 条
  • [21] Prediction of Flow Based on a CNN-LSTM Combined Deep Learning Approach
    Li, Peifeng
    Zhang, Jin
    Krebs, Peter
    WATER, 2022, 14 (06)
  • [22] Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations
    Zang, Haixiang
    Liu, Ling
    Sun, Li
    Cheng, Lilin
    Wei, Zhinong
    Sun, Guoqiang
    RENEWABLE ENERGY, 2020, 160 : 26 - 41
  • [23] An enhanced CNN-LSTM based multi-stage framework for PV and load short-term forecasting: DSO scenarios
    Al-Ja'afreh, Mohammad Ahmad A.
    Mokryani, Geev
    Amjad, Bilal
    ENERGY REPORTS, 2023, 10 : 1387 - 1408
  • [24] Short-Term Crack in Sewer Forecasting Method Based on CNN-LSTM Hybrid Neural Network Model
    Jang, Seung-Ju
    Jang, Seung-Yup
    JOURNAL OF THE KOREAN GEOSYNTHETIC SOCIETY, 2022, 21 (02): : 11 - 19
  • [25] An enhanced CNN-LSTM remaining useful life prediction model for aircraft engine with attention mechanism
    Li, Hao
    Wang, Zhuojian
    Li, Zhe
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [26] CNN-LSTM Base Station Traffic Prediction Based On Dual Attention Mechanism and Timing Application
    Jia, Hairong
    Wang, Suying
    Ren, Zelong
    COMPUTER JOURNAL, 2024, 67 (06) : 2246 - 2256
  • [27] Prediction of short-term photovoltaic power based on WGAN-GP and CNN-LSTM-Attention
    Lei K.
    Tusongjiang K.
    Yilihamu Y.
    Su N.
    Wu X.
    Cui C.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2023, 51 (09): : 108 - 118
  • [28] A Study on Water Quality Prediction by a Hybrid Dual Channel CNN-LSTM Model with Attention Mechanism
    Liu, Yibei
    Liu, Peishun
    Wang, Xuefang
    Zhang, Xueqing
    Qin, Zifei
    INTERNATIONAL CONFERENCE ON SMART TRANSPORTATION AND CITY ENGINEERING 2021, 2021, 12050
  • [29] Ultra-short-term Power Load Forecasting Based on Cluster Empirical Mode Decomposition of CNN-LSTM
    Liu Y.
    Zhao Q.
    Dianwang Jishu/Power System Technology, 2021, 45 (11): : 4444 - 4451
  • [30] Pressure prediction for air cyclone centrifugal classifier based on CNN-LSTM enhanced by attention mechanism
    Li, Wenhao
    Li, Xinhao
    Yuan, Jiale
    Liu, Runyu
    Liu, Yuhan
    Ye, Qing
    Jiang, Haishen
    Huang, Long
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 205 : 775 - 791