Atomistic insight into the shock-induced bubble collapse in water

被引:11
作者
Rawat, Sunil [1 ]
Mitra, Nilanjan [2 ]
机构
[1] Pimpri Chinchwad Univ, Sch Engn, Pune 412106, Maharashtra, India
[2] Johns Hopkins Univ, Hopkins Extreme Mat Inst, Baltimore, MD USA
关键词
NONEQUILIBRIUM MOLECULAR-DYNAMICS; UNIMOLECULAR DECOMPOSITION; MECHANISM; EQUATION;
D O I
10.1063/5.0158192
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Atomistic simulations are employed to investigate the dynamics of shock-induced bubble collapse in water. Two types of bubbles (an empty bubble and a bubble filled with N-2 gas) in water are considered in this study. Apart from the manifestation of a rise in temperature and pressure due to implosion energy released upon bubble collapse; distinct differences in response could be observed for the case of empty bubble to that of the case of the bubble with N-2 gas. It is observed that the mechanism of the bubble associated with bubble dissociation as well as the time taken for collapse are changed with the introduction of N-2 gas within the bubble. Numerous new chemical species are also observed as the N-2 within the bubble reacts with water molecules upon shock compression which can be correlated with the differences in observation between an empty bubble system and a system containing Nv gas. This study is anticipated to lead to further improvements in continuum theories for cavitation bubble collapse in which the effects of chemical reactions need to be incorporated.
引用
收藏
页数:14
相关论文
共 70 条
[1]  
Allen MP., 1991, Computer simulation of liquids
[3]   Molecular dynamics simulations of shock waves using the absorbing boundary condition: A case study of methane [J].
Bolesta, Alexey V. ;
Zheng, Lianqing ;
Thompson, Donald L. ;
Sewell, Thomas D. .
PHYSICAL REVIEW B, 2007, 76 (22)
[4]  
Brennen CE, 2014, CAVITATION AND BUBBLE DYNAMICS, P1
[5]   The mechanism for unimolecular decomposition of RDX (1,3,5-trinitro-1,3,5-triazine), an ab initio study [J].
Chakraborty, D ;
Muller, RP ;
Dasgupta, S ;
Goddard, WA .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (11) :2261-2272
[6]   Poration of lipid bilayers by shock-induced nanobubble collapse [J].
Choubey, Amit ;
Vedadi, Mohammad ;
Nomura, Ken-ichi ;
Kalia, Rajiv K. ;
Nakano, Aiichiro ;
Vashishta, Priya .
APPLIED PHYSICS LETTERS, 2011, 98 (02)
[7]  
Cole R H., 1948, Underwater Explosions
[8]  
Cooper P., 1997, EXPLOSIVES ENG
[9]   Hamiltonian classical thermodynamics and chemical kinetics [J].
Farantos, Stavros C. .
PHYSICA D-NONLINEAR PHENOMENA, 2021, 417 (417)
[10]  
Fried E., 2010, The Mechanics and Thermodynamics of Continua