Optimal auxiliary function method for analyzing nonlinear system of coupled Schrodinger-KdV equation with Caputo operator

被引:2
|
作者
Alshehry, Azzh Saad [2 ]
Yasmin, Humaira [1 ]
Ganie, Abdul Hamid [3 ]
Ahmad, Muhammad Wakeel [4 ]
Shah, Rasool [4 ]
机构
[1] King Faisal Univ, Dept Basic Sci, Preparatory Year Deanship, Al Hasa 31982, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Dept Math Sci, POB 84428, Riyadh 11671, Saudi Arabia
[3] Saudi Elect Univ, Coll Sci & Theoret Studies, Basic Sci Dept, Riyadh 11673, Saudi Arabia
[4] Abdul Wali Khan Univ Mardan, Dept Math, Mardan, Pakistan
来源
OPEN PHYSICS | 2023年 / 21卷 / 01期
关键词
optimal auxiliary function method; nonlinear system of Schrodinger-KdV equation; Caputo operator; fractional calculus; KORTEWEG; VRIES; WAVES;
D O I
10.1515/phys-2023-0127
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The optimal auxiliary function method (OAFM) is introduced and used in the analysis of a nonlinear system containing coupled Schrodinger-KdV equations, all within the framework of the Caputo operator. The OAFM, known for its efficiency in solving nonlinear issues, is used to obtain approximate solutions for the coupled equations' complicated dynamics. Numerical and graphical assessments prove the suggested method's correctness and efficiency. This study contributes to the understanding and analysis of coupled Schrodinger-KdV equations and their many applications by providing insights into the behavior of nonlinear systems within mathematical physics.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Optimal Auxiliary Function Method for Analyzing Nonlinear System of Belousov-Zhabotinsky Equation with Caputo Operator
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ahmad, Muhammad Wakeel
    Khan, Asfandyar
    Shah, Rasool
    AXIOMS, 2023, 12 (09)
  • [2] On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrodinger-KdV Equation in the Framework of the Caputo Operator
    Noor, Saima
    Alotaibi, Badriah M.
    Shah, Rasool
    Ismaeel, Sherif M. E.
    El-Tantawy, Samir A.
    SYMMETRY-BASEL, 2023, 15 (08):
  • [3] On the solution of the coupled Schrodinger-KdV equation by the decomposition method
    Kaya, D
    El-Sayed, SM
    PHYSICS LETTERS A, 2003, 313 (1-2) : 82 - 88
  • [4] Homotopy perturbation method for coupled Schrodinger-KdV equation
    Kucukarslan, Semih
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (04) : 2264 - 2271
  • [5] Petrov-Galerkin Method for the Coupled Schrodinger-KdV Equation
    Ismail, M. S.
    Mosally, Farida M.
    Alamoudi, Khadeejah M.
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [6] Fractional Dynamics and Analysis of Coupled Schrodinger-KdV Equation With Caputo-Katugampola Type Memory
    Singh, Jagdev
    Gupta, Arpita
    Baleanu, Dumitru
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2023, 18 (09):
  • [7] A Haar wavelet collocation method for coupled nonlinear Schrodinger-KdV equations
    Oruc, Omer
    Esen, Alaattin
    Bulut, Fatih
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2016, 27 (09):
  • [8] Numerical Analysis of Nonlinear Coupled Schrodinger-KdV System with Fractional Derivative
    Alzahrani, Abdulrahman B. M.
    SYMMETRY-BASEL, 2023, 15 (09):
  • [9] A conservative spectral method for the coupled Schrodinger-KdV equations
    Zhou, Hao
    Han, Danfu
    Du, Miaoyong
    Shi, Yao
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (05):
  • [10] Convergence of a numerical scheme for a coupled Schrodinger-KdV system
    Amorim, Paulo
    Figueira, Mario
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (02): : 409 - 426