CT radiomics for prediction of microvascular invasion in hepatocellular carcinoma: A systematic review and meta-analysis

被引:7
作者
Zhou, Hai-ying [1 ,2 ]
Cheng, Jin-mei [1 ,2 ]
Chen, Tian-wu [1 ,2 ,3 ]
Zhang, Xiao-ming [1 ,2 ]
Ou, Jing [1 ,2 ]
Cao, Jin-ming [4 ]
Li, Hong-jun [5 ]
机构
[1] North Sichuan Med Coll, Affiliated Hosp, Med Imaging Key Lab Sichuan Prov, Nanchong, Sichuan, Peoples R China
[2] North Sichuan Med Coll, Dept Radiol, Affiliated Hosp, Nanchong, Sichuan, Peoples R China
[3] Chongqing Med Univ, Dept Radiol, Affiliated Hosp 2, Chongqing, Peoples R China
[4] Nanchong Cent Hosp, North Sichuan Med Coll, Sch Clin Med 2, Dept Radiol, Nanchong, Sichuan, Peoples R China
[5] Capital Med Univ, Beijing YouAn Hosp, Dept Radiol, Beijing, Peoples R China
关键词
Radiomics; Microvascular invasion; Hepatocellular carcinoma; Computed tomography; Systematic review; Meta-analysis; DIAGNOSIS;
D O I
10.1016/j.clinsp.2023.100264
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The power of computed tomography (CT) radiomics for preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) demonstrated in current research is variable. This systematic review and meta-analysis aim to evaluate the value of CT radiomics for MVI prediction in HCC, and to investigate the methodologic quality in the workflow of radiomics research. Databases of PubMed, Embase, Web of Science, and Cochrane Library were systematically searched. The methodologic quality of included studies was assessed. Validation data from studies with Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) statement type 2a or above were extracted for meta-analysis. Eleven studies were included, among which nine were eligible for meta-analysis. Radiomics quality scores of the enrolled eleven studies varied from 6 to 17, accounting for 16.7%-47.2% of the total points, with an average score of 14. Pooled sensitivity, specificity, and Area Under the summary receiver operator Characteristic Curve (AUC) were 0.82 (95% CI 0.77-0.86), 0.79 (95% CI 0.75-0.83), and 0.87 (95% CI 0.84-0.91) for the predictive performance of CT radiomics, respectively. Meta-regression and subgroup analyses showed radiomics model based on 3D tumor segmentation, and deep learning model achieved superior performances compared to 2D segmentation and non-deep learning model, respectively (AUC: 0.93 vs. 0.83, and 0.97 vs. 0.83, respectively). This study proves that CT radiomics could predict MVI in HCC. The heterogeneity of the included studies precludes a definition of the role of CT radiomics in predicting MVI, but methodology warrants uniformization in the radiology community regarding radiomics in HCC.
引用
收藏
页数:7
相关论文
共 24 条
[1]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[2]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639]
[3]   Prognostic and Therapeutic Implications of Microvascular Invasion in Hepatocellular Carcinoma [J].
Erstad, Derek J. ;
Tanabe, Kenneth K. .
ANNALS OF SURGICAL ONCOLOGY, 2019, 26 (05) :1474-1493
[4]   Hepatocellular carcinoma [J].
Forner, Alejandro ;
Reig, Maria ;
Bruix, Jordi .
LANCET, 2018, 391 (10127) :1301-1314
[5]   Radiomic Feature-Based Predictive Model for Microvascular Invasion in Patients With Hepatocellular Carcinoma [J].
He, Mu ;
Zhang, Peng ;
Ma, Xiao ;
He, Baochun ;
Fang, Chihua ;
Jia, Fucang .
FRONTIERS IN ONCOLOGY, 2020, 10
[6]   Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning [J].
Jiang, Yi-Quan ;
Cao, Su-E ;
Cao, Shilei ;
Chen, Jian-Ning ;
Wang, Guo-Ying ;
Shi, Wen-Qi ;
Deng, Yi-Nan ;
Cheng, Na ;
Ma, Kai ;
Zeng, Kai-Ning ;
Yan, Xi-Jing ;
Yang, Hao-Zhen ;
Huan, Wen-Jing ;
Tang, Wei-Min ;
Zheng, Yefeng ;
Shao, Chun-Kui ;
Wang, Jin ;
Yang, Yang ;
Chen, Gui-Hua .
JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2021, 147 (03) :821-833
[7]   Radiomics: the bridge between medical imaging and personalized medicine [J].
Lambin, Philippe ;
Leijenaar, Ralph T. H. ;
Deist, Timo M. ;
Peerlings, Jurgen ;
de Jong, Evelyn E. C. ;
van Timmeren, Janita ;
Sanduleanu, Sebastian ;
Larue, Ruben T. H. M. ;
Even, Aniek J. G. ;
Jochems, Arthur ;
van Wijk, Yvonka ;
Woodruff, Henry ;
van Soest, Johan ;
Lustberg, Tim ;
Roelofs, Erik ;
van Elmpt, Wouter ;
Dekker, Andre ;
Mottaghy, Felix M. ;
Wildberger, Joachim E. ;
Walsh, Sean .
NATURE REVIEWS CLINICAL ONCOLOGY, 2017, 14 (12) :749-762
[8]   Predicting microvascular invasion in hepatocellular carcinoma: a deep learning model validated across hospitals [J].
Liu, Shu-Cheng ;
Lai, Jesyin ;
Huang, Jhao-Yu ;
Cho, Chia-Fong ;
Lee, Pei Hua ;
Lu, Min-Hsuan ;
Yeh, Chun-Chieh ;
Yu, Jiaxin ;
Lin, Wei-Ching .
CANCER IMAGING, 2021, 21 (01)
[9]   Radiomics for the detection of microvascular invasion in hepatocellular carcinoma [J].
Lv, Kun ;
Cao, Xin ;
Du, Peng ;
Fu, Jun-Yan ;
Geng, Dao-Ying ;
Zhang, Jun .
WORLD JOURNAL OF GASTROENTEROLOGY, 2022, 28 (20) :2176-2183
[10]   Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT [J].
Ma, Xiaohong ;
Wei, Jingwei ;
Gu, Dongsheng ;
Zhu, Yongjian ;
Feng, Bing ;
Liang, Meng ;
Wang, Shuang ;
Zhao, Xinming ;
Tian, Jie .
EUROPEAN RADIOLOGY, 2019, 29 (07) :3595-3605