Likelihood-based inference for linear mixed-effects models using the generalized hyperbolic distribution

被引:0
作者
Lachos, Victor H. [1 ]
Galea, Manuel [2 ]
Zeller, Camila [3 ]
Prates, Marcos O. [4 ]
机构
[1] Univ Connecticut, Dept Stat, Storrs, CT USA
[2] Pontificia Univ Catolica Chile, Dept Estadist, Santiago, Chile
[3] Univ Fed Juiz de Fora, Dept Estat, Juiz De Fora, MG, Brazil
[4] Univ Fed Minas Gerais, Dept Estat, Belo Horizonte, Brazil
来源
STAT | 2023年 / 12卷 / 01期
关键词
EM algorithm; generalized hyperbolic distribution; heavy-tailed distributions; linear mixed-effects models; MULTIVARIATE; EFFICIENT; MIXTURES;
D O I
10.1002/sta4.602
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop statistical methodology for the analysis of data under nonnormal distributions, in the context of mixed effects models. Although the multivariate normal distribution is useful in many cases, it is not appropriate, for instance, when the data come from skewed and/or heavy-tailed distributions. To analyse data with these characteristics, in this paper, we extend the standard linear mixed effects model, considering the family of generalized hyperbolic distributions. We propose methods for statistical inference based on the likelihood function, and due to its complexity, the EM algorithm is used to find the maximum likelihood estimates with the standard errors and the exact likelihood value as a by-product. We use simulations to investigate the asymptotic properties of the expectation-maximization algorithm (EM) estimates and prediction accuracy. A real example is analysed, illustrating the usefulness of the proposed methods.
引用
收藏
页数:16
相关论文
共 41 条
  • [1] Arellano-Valle RB., 2005, J DATA SCI, V3, P415, DOI DOI 10.6339/JDS.2005.03(4).238
  • [2] Scale and shape mixtures of multivariate skew-normal distributions
    Arellano-Valle, Reinaldo B.
    Ferreira, Clecio S.
    Genton, Marc G.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 166 : 98 - 110
  • [3] The multivariate skew-normal distribution
    Azzalini, A
    DallaValle, A
    [J]. BIOMETRIKA, 1996, 83 (04) : 715 - 726
  • [4] Normal inverse Gaussian distributions and stochastic volatility modelling
    BarndorffNielsen, OE
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1997, 24 (01) : 1 - 13
  • [5] A general class of multivariate skew-elliptical distributions
    Branco, MD
    Dey, DK
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2001, 79 (01) : 99 - 113
  • [6] A mixture of generalized hyperbolic distributions
    Browne, Ryan P.
    McNicholas, Paul D.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (02): : 176 - 198
  • [7] Demidenko E., 2013, MIXED MODELS THEORY
  • [8] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [9] On the property of multivariate generalized hyperbolic distribution and the Stein-type inequality
    Deng, Xiang
    Yao, Jing
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (21) : 5346 - 5356
  • [10] Diggle P.J., 2002, ANAL LONGITUDINAL DA, V2nd, DOI [10.2307/2983303, DOI 10.2307/2983303]