Comparison of CNN-based deep learning architectures for rice diseases classification

被引:53
|
作者
Ahad, Md Taimur [1 ]
Li, Yan [2 ]
Song, Bo [3 ]
Bhuiyan, Touhid [4 ]
机构
[1] Daffodil Int Univ, Dept Comp Sci & Engn, Savar, Bangladesh
[2] Univ Southern Queensland, Sch Math Phys & Comp, Toowoomba, Australia
[3] Univ Southern Queensland, Sch Engn, Toowoomba, Australia
[4] Daffodil Int Univ, Fac Sci & Informat Technol, Dept Comp Sci & Engn, Savar, Bangladesh
来源
ARTIFICIAL INTELLIGENCE IN AGRICULTURE | 2023年 / 9卷
关键词
Deep learning; Convolutional neural networks (CNNs); Transfer learning; Plant leaf disease detection;
D O I
10.1016/j.aiia.2023.07.001
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Although convolutional neural network (CNN) paradigms have expanded to transfer learning and ensemble models from original individual CNN architectures, few studies have focused on the performance comparison of the applicability of these techniques in detecting and localizing rice diseases. Moreover, most CNN-based rice disease detection studies only considered a small number of diseases in their experiments. Both these short-comings were addressed in this study. In this study, a rice disease classification comparison of six CNN-based deep-learning architectures (DenseNet121, Inceptionv3, MobileNetV2, resNext101, Resnet152V, and Seresnext101) was conducted using a database of nine of the most epidemic rice diseases in Bangladesh. In ad-dition, we applied a transfer learning approach to DenseNet121, MobileNetV2, Resnet152V, Seresnext101, and an ensemble model called DEX (Densenet121, EfficientNetB7, and Xception) to compare the six individual CNN net-works, transfer learning, and ensemble techniques. The results suggest that the ensemble framework provides the best accuracy of 98%, and transfer learning can increase the accuracy by 17% from the results obtained by Seresnext101 in detecting and localizing rice leaf diseases. The high accuracy in detecting and categorisation rice leaf diseases using CNN suggests that the deep CNN model is promising in the plant disease detection domain and can significantly impact the detection of diseases in real-time agricultural systems. This research is significant for farmers in rice-growing countries, as like many other plant diseases, rice diseases require timely and early identification of infected diseases and this research develops a rice leaf detection system based on CNN that is ex-pected to help farmers to make fast decisions to protect their agricultural yields and quality. & COPY; 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:22 / 35
页数:14
相关论文
共 50 条
  • [31] A twin CNN-based framework for optimized rice leaf disease classification with feature fusion
    Prameetha Pai
    S. Amutha
    Mustafa Basthikodi
    B. M. Ahamed Shafeeq
    K. M. Chaitra
    Ananth Prabhu Gurpur
    Journal of Big Data, 12 (1)
  • [32] CNN-Based Malware Family Classification and Evaluation
    Hebish, Mohamed Wael
    Awni, Mohamed
    2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, : 219 - 224
  • [33] Deep transfer learning CNN based for classification quality of organic vegetables
    Promboonruang, Suksun
    Boonrod, Thummarat
    INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2023, 10 (12): : 203 - 210
  • [34] How Transferable are CNN-based Features for Age and Gender Classification?
    Ozbulak, Gokhan
    Aytar, Yusuf
    Ekenel, Hazim Kemal
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE OF THE BIOMETRICS SPECIAL INTEREST GROUP (BIOSIG 2016), 2016, P-260
  • [35] Microseismic event waveform classification using CNN-based transfer learning models
    Dong, Longjun
    Shu, Hongmei
    Tang, Zheng
    Yan, Xianhang
    INTERNATIONAL JOURNAL OF MINING SCIENCE AND TECHNOLOGY, 2023, 33 (10) : 1203 - 1216
  • [36] Infrasound threat classification: A statistical comparison of deep learning architectures
    Solomon, Mitchell L.
    Bryan, Kaylen J.
    Smith, Kaleb E.
    Clauter, Dean A.
    Smith, Anthony O.
    Peter, Adrian M.
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XIX, 2018, 10629
  • [37] A Comparison of Deep Learning Architectures for Optical Galaxy Morphology Classification
    Fielding, Ezra
    Nyirenda, Clement N.
    Vaccari, Mattia
    INTERNATIONAL CONFERENCE ON ELECTRICAL, COMPUTER AND ENERGY TECHNOLOGIES (ICECET 2021), 2021, : 1360 - 1364
  • [38] Comparative performance of four CNN-based deep learning variants in detecting Hispa pest, two fungal diseases, and NPK deficiency symptoms of rice (Oryza sativa)
    Dey, Biplob
    Ul Haque, Mohammed Masum
    Khatun, Rahela
    Ahmed, Romel
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 202
  • [39] Local Features Based Deep Learning for Mammographic Image Classification: In Comparison to CNN Models
    Utomo, Ardiant
    Juniawan, Edwin Farrel
    Lioe, Vincent
    Santika, Diaz D.
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 169 - 176
  • [40] Activity Pattern Aware Spectrum Sensing: A CNN-Based Deep Learning Approach
    Xie, Jiandong
    Liu, Chang
    Liang, Ying-Chang
    Fang, Jun
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (06) : 1025 - 1028