Personalized Longitudinal Assessment of Multiple Sclerosis Using Smartphones

被引:2
作者
Chen, Oliver Y. [1 ]
Lipsmeier, Florian [2 ]
Phan, Huy [3 ,4 ,5 ]
Dondelinger, Frank [2 ,6 ]
Creagh, Andrew [7 ,8 ]
Gossens, Christian [2 ]
Lindemann, Michael [2 ]
de Vos, Maarten [9 ,10 ]
机构
[1] Univ Bristol, Bristol BS8 2LR, England
[2] F Hoffmann La Roche Ltd, Roche Innovat Ctr Basel, CH-4070 Basel, Switzerland
[3] Queen Mary Univ London, London E1 4NS, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Amazon Alexa, Cambridge, MA 02142 USA
[6] Novartis AG, Novartis Inst BioMed Res, CH-4033 Basel, Switzerland
[7] Univ Oxford, Inst Biomed Engn, Oxford OX3 7DQ, England
[8] Univ Oxford, Big Data Inst, Oxford OX3 7LF, England
[9] Katholieke Univ Leuven, Dept Engn, Leuven, Belgium
[10] Katholieke Univ Leuven, Dept Med, Leuven, Belgium
关键词
Ensemble learning; digital health technology; generalized estimation equation; longitudinal prediction; missing data imputation; multiple sclerosis; smartphone sensors; subject-specific fine-tuning; IMPACT SCALE MSIS-29; QUALITY-OF-LIFE; MANUAL DEXTERITY; IMPUTATION; DISABILITY; WALKING; ATLAS;
D O I
10.1109/JBHI.2023.3272117
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Personalized longitudinal disease assessment is central to quickly diagnosing, appropriately managing, and optimally adapting the therapeutic strategy of multiple sclerosis (MS). It is also important for identifying idiosyncratic subject-specific disease profiles. Here, we design a novel longitudinal model to map individual disease trajectories in an automated way using smartphone sensor data that may contain missing values. First, we collect digital measurements related to gait and balance, and upper extremity functions using sensor-based assessments administered on a smartphone. Next, we treat missing data via imputation. We then discover potential markers of MS by employing a generalized estimation equation. Subsequently, parameters learned from multiple training datasets are ensembled to form a simple, unified longitudinal predictive model to forecast MS over time in previously unseen people with MS. To mitigate potential underestimation for individuals with severe disease scores, the final model incorporates additional subject-specific fine-tuning using data from the first day. The results show that the proposed model is promising to achieve personalized longitudinal MS assessment; they also suggest that features related to gait and balance as well as upper extremity function, remotely collected from sensor-based assessments, may be useful digital markers for predicting MS over time.
引用
收藏
页码:3633 / 3644
页数:12
相关论文
共 52 条
  • [41] RUBIN DB, 1976, BIOMETRIKA, V63, P581, DOI 10.1093/biomet/63.3.581
  • [42] Rubin DB, 2004, MULTIPLE IMPUTATION, DOI [10.1002/9780470316696, DOI 10.1002/9780470316696]
  • [43] The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability
    Scalfari, Antonio
    Neuhaus, Anneke
    Degenhardt, Alexandra
    Rice, George P.
    Muraro, Paolo A.
    Daumer, Martin
    Ebers, George C.
    [J]. BRAIN, 2010, 133 : 1914 - 1929
  • [44] Infection as an environmental trigger of multiple sclerosis disease exacerbation
    Steelman, Andrew J.
    [J]. FRONTIERS IN IMMUNOLOGY, 2015, 6
  • [45] Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
    Sterne, Jonathan A. C.
    White, Ian R.
    Carlin, John B.
    Spratt, Michael
    Royston, Patrick
    Kenward, Michael G.
    Wood, Angela M.
    Carpenter, James R.
    [J]. BMJ-BRITISH MEDICAL JOURNAL, 2009, 339 : 157 - 160
  • [46] Tsang BKT, 2011, AUST FAM PHYSICIAN, V40, P948
  • [47] van Beek J., 2019, PROC ANN MEETINGCONS
  • [48] van Buuren S, 2011, J STAT SOFTW, V45, P1
  • [49] New Confidence Intervals and Bias Comparisons Show That Maximum Likelihood Can Beat Multiple Imputation in Small Samples
    von Hippel, Paul T.
    [J]. STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2016, 23 (03) : 422 - 437
  • [50] Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition
    Walton, Clare
    King, Rachel
    Rechtman, Lindsay
    Kaye, Wendy
    Leray, Emmanuelle
    Marrie, Ruth Ann
    Robertson, Neil
    La Rocca, Nicholas
    Uitdehaag, Bernard
    van der Mei, Ingrid
    Wallin, Mitchell
    Helme, Anne
    Napier, Ceri Angood
    Rijke, Nick
    Baneke, Peer
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (14) : 1816 - 1821