Extending the admissible control-loop delays for the inverted pendulum by fractional-order proportional-derivative controller

被引:1
作者
Balogh, Tamas [1 ]
Insperger, Tamas [1 ,2 ]
机构
[1] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Appl Mech, Muegyetem Rkp 3, H-1111 Budapest, Hungary
[2] ELKH BME Dynam Machines Res Grp, Budapest, Hungary
关键词
feedback systems; stabilizability; time delay; fractional-order control; inverted pendulum; SYSTEMS;
D O I
10.1177/10775463231181662
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Stabilization of the inverted pendulum by fractional-order proportional-derivative (PD) feedback with two delays is investigated. This feedback law is obtained as a combination of PD feedback with two delays and fractional-order PD feedback with a single delay. Different types of stabilizability boundaries and the corresponding geometric and multiplicity conditions are determined using the D-subdivision method. The stabilizable region is depicted in the plane of the delay parameters for given fractional derivative orders. Several special cases and the concept of delay detuning are also discussed. It is shown that the admissible delay can be slightly increased compared to the integer-order PD feedback by introducing a fractional-order feedback term.
引用
收藏
页码:2596 / 2604
页数:9
相关论文
共 29 条
  • [21] Bifurcation and stability analysis of a hybrid energy harvester with fractional-order proportional-integral-derivative controller and Gaussian white noise excitations
    Sun, Ya-Hui
    Sun, Yongtao
    Yang, Yong-Ge
    Xu, Wei
    PROBABILISTIC ENGINEERING MECHANICS, 2023, 73
  • [22] Robust Control of Rotary Inverted Pendulum Using Metaheuristic Optimization Techniques Based PID and Fractional Order PIλDμController
    Tomar, Basant
    Kumar, Narendra
    Sreejeth, Mini
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, 12 (SUPPL 1) : 1 - 20
  • [23] Circulating current control of modular multilevel converter by wild spider foraging optimization based fractional order proportional integral derivative controller
    Balamurugan, S.
    Nageswari, S.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 41 (02) : 4127 - 4147
  • [24] Trajectory tracking of differential drive mobile robots using fractional-order proportional-integral-derivative controller design tuned by an enhanced fruit fly optimization
    Abed, Azher M.
    Rashid, Zryan Najat
    Abedi, Firas
    Zeebaree, Subhi R. M.
    Sahib, Mouayad A.
    Mohamad Jawad, Anwar Ja'afar
    Redha Ibraheem, Ghusn Abdul
    Maher, Rami A.
    Abdulkareem, Ahmed Ibraheem
    Ibraheem, Ibraheem Kasim
    Azar, Ahmad Taher
    Al-khaykan, Ameer
    MEASUREMENT & CONTROL, 2022, 55 (3-4) : 209 - 226
  • [25] Design of a novel intelligent adaptive fractional-order proportional-integral-derivative controller for mitigation of seismic vibrations of a building equipped with an active tuned mass damper
    Jafarzadeh, Ommegolsoum
    Sabetahd, Rasoul
    Ghasemi, Seyyed Arash Mousavi
    Zahrai, Seyed Mehdi
    SMART MATERIALS AND STRUCTURES, 2024, 33 (09)
  • [26] Pitch angle control of wind turbines using model-free auto-tuned fractional order proportional derivative ATFOPD controller
    Frikh, Mohamed Lamine
    Boutasseta, Nadir
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 116
  • [27] Sliding mode observer-based fractional-order proportional-integral-derivative sliding mode control for electro-hydraulic servo systems
    Cheng, Cheng
    Liu, Songyong
    Wu, Hongzhuang
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2020, 234 (10) : 1887 - 1898
  • [28] Improved frequency-domain design method for the fractional order proportional-integral-derivative controller optimal design: a case study of permanent magnet synchronous motor speed control
    Zheng, Weijia
    Luo, Ying
    Pi, Youguo
    Chen, Yangquan
    IET CONTROL THEORY AND APPLICATIONS, 2018, 12 (18) : 2478 - 2487
  • [29] Robust Control of Rotary Inverted Pendulum Using Metaheuristic Optimization Techniques Based PID and Fractional Order PIλDμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\text{I}}}^{\uplambda }{{\text{D}}}^{\upmu }$$\end{document} Controller
    Basant Tomar
    Narendra Kumar
    Mini Sreejeth
    Journal of Vibration Engineering & Technologies, 2024, 12 (Suppl 1) : 1 - 20