Inverse Scattering Transform for Nonlinear Schrodinger Systems on a Nontrivial Background: A Survey of Classical Results, New Developments and Future Directions

被引:5
作者
Prinari, Barbara [1 ]
机构
[1] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
基金
英国工程与自然科学研究理事会;
关键词
Nonlinear Schrodinger systems; Integrable systems; Inverse scattering transform; Solitons; LONG-TIME ASYMPTOTICS; DISPERSIVE DIELECTRIC FIBERS; DEFOCUSING MANAKOV SYSTEM; ZAKHAROV-SHABAT OPERATOR; RIEMANN-HILBERT PROBLEMS; STEEPEST DESCENT METHOD; DARK SOLITONS; MODULATION INSTABILITY; DISCRETE EIGENVALUES; BOUNDARY-CONDITIONS;
D O I
10.1007/s44198-023-00120-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this topical review paper we provide a survey of classical and more recent results on the IST for one-dimensional scalar, vector and square matrix NLS systems on the line ( -8 < x < 8) with certain physically relevant non-zero boundary conditions at space infinity, discuss some new developments and applications, and offer some perspectives about future directions on the subject.
引用
收藏
页码:317 / 383
页数:67
相关论文
共 196 条
[1]   Inverse Scattering Transform for the Defocusing Manakov System with Non-Parallel Boundary Conditions at Infinity [J].
Abeya, Asela ;
Biondini, Gino ;
Prinari, Barbara .
EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2022, 12 (04) :715-760
[2]   Manakov system with parity symmetry on nonzero background and associated boundary value problems [J].
Abeya, Asela ;
Biondini, Gino ;
Prinari, Barbara .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (25)
[3]   Solitons and soliton interactions in repulsive spinor Bose-Einstein condensates with nonzero background [J].
Abeya, Asela ;
Prinari, Barbara ;
Biondini, Gino ;
Kevrekidis, Panos G. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (11)
[4]  
Ablowitz M., 2004, Discrete and Continuous Nonlinear Schrodinger Systems
[5]  
Ablowitz M., 1981, SOLITONS INVERSE SCA, DOI DOI 10.1137/1.9781611970883
[6]   Inverse scattering transform for the integrable discrete nonlinear Schrodinger equation with nonvanishing boundary conditions [J].
Ablowitz, Mark J. ;
Biondini, Gino ;
Prinari, Barbara .
INVERSE PROBLEMS, 2007, 23 (04) :1711-1758
[7]   Fractional integrable and related discrete nonlinear Schrodinger equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
PHYSICS LETTERS A, 2022, 452
[8]   Fractional Integrable Nonlinear Soliton Equations [J].
Ablowitz, Mark J. ;
Been, Joel B. ;
Carr, Lincoln D. .
PHYSICAL REVIEW LETTERS, 2022, 128 (18)
[9]   Integrable space-time shifted nonlocal nonlinear equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICS LETTERS A, 2021, 409
[10]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59