Homeostatic synaptic plasticity rescues neural coding reliability

被引:9
作者
Rozenfeld, Eyal [1 ,2 ]
Ehmann, Nadine [3 ]
Manoim, Julia E. [1 ]
Kittel, Robert J. [3 ]
Parnas, Moshe [1 ,2 ]
机构
[1] Tel Aviv Univ, Sackler Sch Med, Dept Physiol & Pharmacol, IL-69978 Tel Aviv, Israel
[2] Tel Aviv Univ, Sagol Sch Neurosci, IL-69978 Tel Aviv, Israel
[3] Univ Leipzig, Inst Biol, Dept Anim Physiol, D-04103 Leipzig, Germany
基金
欧洲研究理事会;
关键词
ANTENNAL LOBE; CALCIUM-CHANNEL; MOLECULAR-BASIS; GAIN-CONTROL; DROSOPHILA; NEURONS; NEUROTRANSMITTER; INFORMATION; CODES; MECHANISMS;
D O I
10.1038/s41467-023-38575-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
How synaptic plasticity affects neural coding reliability is not well understood. Here, the authors find that reducing neurotransmitter release probability triggers a homeostatic compensation to maintain neural coding and behavioral reliability. To survive, animals must recognize reoccurring stimuli. This necessitates a reliable stimulus representation by the neural code. While synaptic transmission underlies the propagation of neural codes, it is unclear how synaptic plasticity can maintain coding reliability. By studying the olfactory system of Drosophila melanogaster, we aimed to obtain a deeper mechanistic understanding of how synaptic function shapes neural coding in the live, behaving animal. We show that the properties of the active zone (AZ), the presynaptic site of neurotransmitter release, are critical for generating a reliable neural code. Reducing neurotransmitter release probability of olfactory sensory neurons disrupts both neural coding and behavioral reliability. Strikingly, a target-specific homeostatic increase of AZ numbers rescues these defects within a day. These findings demonstrate an important role for synaptic plasticity in maintaining neural coding reliability and are of pathophysiological interest by uncovering an elegant mechanism through which the neural circuitry can counterbalance perturbations.
引用
收藏
页数:14
相关论文
共 50 条
[31]   An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling [J].
Kim, Jimok ;
Tsien, Richard W. ;
Alger, Bradley E. .
PLOS ONE, 2012, 7 (05)
[32]   Synaptic Sampling: A Bayesian Approach to Neural Network Plasticity and Rewiring [J].
Kappel, David ;
Habenschuss, Stefan ;
Legenstein, Robert ;
Maass, Wolfgang .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
[33]   Why is synaptic plasticity not enough? [J].
Hansel, Christian ;
Disterhoft, John F. .
NEUROBIOLOGY OF LEARNING AND MEMORY, 2020, 176
[34]   The decoy SNARE Tomosyn sets tonic versus phasic release properties and is required for homeostatic synaptic plasticity [J].
Sauvola, Chad W. ;
Akbergenova, Yulia ;
Cunningham, Karen L. ;
Aponte-Santiago, Nicole A. ;
Littleton, J. Troy .
ELIFE, 2021, 10
[35]   AN ESSENTIAL POSTSYNAPTIC ROLE FOR THE UBIQUITIN PROTEASOME SYSTEM IN SLOW HOMEOSTATIC SYNAPTIC PLASTICITY IN CULTURED HIPPOCAMPAL NEURONS [J].
Jakawich, S. K. ;
Neely, R. M. ;
Djakovic, S. N. ;
Patrick, G. N. ;
Sutton, M. A. .
NEUROSCIENCE, 2010, 171 (04) :1016-1031
[36]   ADAR2-mediated Q/R editing of GluA2 in homeostatic synaptic plasticity [J].
Peterson, Lucy ;
Coca, Richard ;
Parikh, Shreya ;
McCarthy, Katrina ;
Man, Heng-Ye .
SCIENCE SIGNALING, 2025, 18 (886)
[37]   HOMEOSTATIC CHANGES OF SHORT-TERM PLASTICITY OF GABAergic SYNAPTIC TRANSMISSION IN RAT HIPPOCAMPAL CELL CULTURES [J].
Ivanova, S. Y. ;
Storozhuk, M. V. .
ZHURNAL VYSSHEI NERVNOI DEYATELNOSTI IMENI I P PAVLOVA, 2011, 61 (05) :517-520
[38]   Involvement of CaV2.2 channels and α2δ-1 in homeostatic synaptic plasticity in cultured hippocampal neurons [J].
Pilch, Kjara S. ;
Ramgoolam, Krishma H. ;
Dolphin, Annette C. .
JOURNAL OF PHYSIOLOGY-LONDON, 2022, 600 (24) :5333-5351
[39]   PDE9A inhibition rescues amyloid beta-induced deficits in synaptic plasticity and cognition [J].
Kroker, Katja S. ;
Mathis, Chantal ;
Marti, Anelise ;
Cassel, Jean-Christophe ;
Rosenbrock, Holger ;
Dorner-Ciossek, Cornelia .
NEUROBIOLOGY OF AGING, 2014, 35 (09) :2072-2078
[40]   The Impact of Sparse Coding on Memory Lifetimes in Simple and Complex Models of Synaptic Plasticity [J].
Elliott, Terry .
BIOLOGICAL CYBERNETICS, 2022, 116 (03) :327-362