The ABC of Generalized Coordination Numbers and Their Use as a Descriptor in Electrocatalysis

被引:32
作者
Calle-Vallejo, Federico [1 ,2 ,3 ]
机构
[1] Univ Basque Country, Dept Adv Mat & Polymers Phys Chem & Technol, Nanobio Spect Grp, UPV EHU, Ave Tolosa 72, San Sebastian 20018, Spain
[2] Univ Basque Country, Dept Adv Mat & Polymers Phys Chem & Technol, European Theoret Spect Facil ETSF, UPV EHU, Ave Tolosa 72, San Sebastian 20018, Spain
[3] Basque Fdn Sci, IKERBASQUE, Plaza Euskadi 5, Bilbao 48009, Spain
关键词
computational electrocatalysis; coordination numbers; coordination-activity plots; descriptor-based analysis; selectivity maps; structural sensitivity; OXYGEN REDUCTION REACTION; ENERGY SCALING RELATIONS; ELECTROCHEMICAL REDUCTION; HYDROGEN EVOLUTION; ADSORPTION-ENERGY; CARBON-DIOXIDE; CO2; REDUCTION; ACTIVE-SITES; ALLOY ELECTROCATALYSTS; EXCHANGE CURRENT;
D O I
10.1002/advs.202207644
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The quest for enhanced electrocatalysts can be boosted by descriptor-based analyses. Because adsorption energies are the most common descriptors, electrocatalyst design is largely based on brute-force routines that comb materials databases until an energetic criterion is verified. In this review, it is shown that an alternative is provided by generalized coordination numbers (denoted by CN over bar $\overline {{\rm{CN}}} $ or GCN), an inexpensive geometric descriptor for strained and unstrained transition metals and some alloys. CN over bar $\overline {{\rm{CN}}} $ captures trends in adsorption energies on both extended surfaces and nanoparticles and is used to elaborate structure-sensitive electrocatalytic activity plots and selectivity maps. Importantly, CN over bar $\overline {{\rm{CN}}} $ outlines the geometric configuration of the active sites, thereby enabling an atom-by-atom design, which is not possible using energetic descriptors. Specific examples for various adsorbates (e.g., *OH, *OOH, *CO, and *H), metals (e.g., Pt and Cu), and electrocatalytic reactions (e.g., O-2 reduction, H-2 evolution, CO oxidation, and reduction) are presented, and comparisons are made against other descriptors.
引用
收藏
页数:15
相关论文
共 145 条
  • [21] Understanding Adsorption-Induced Effects on Platinum Nanoparticles: An Energy-Decomposition Analysis
    Calle-Vallejo, Federico
    Sautet, Philippe
    Loffreda, David
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (18): : 3120 - 3124
  • [22] Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers
    Calle-Vallejo, Federico
    Martinez, Jose I.
    Garcia-Lastra, Juan M.
    Sautet, Philippe
    Loffreda, David
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (32) : 8316 - 8319
  • [23] Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes
    Calle-Vallejo, Federico
    Koper, Marc T. M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) : 7282 - 7285
  • [24] Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate
    Calle-Vallejo, Federico
    Huang, Minghua
    Henry, John B.
    Koper, Marc T. M.
    Bandarenka, Aliaksandr S.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (09) : 3196 - 3202
  • [25] Trends in Stability of Perovskite Oxides
    Calle-Vallejo, Federico
    Martinez, Jose I.
    Garcia-Lastra, Juan M.
    Mogensen, Mogens
    Rossmeisl, Jan
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (42) : 7699 - 7701
  • [26] Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis
    Chattot, Raphael
    Le Bacq, Olivier
    Beermann, Vera
    Kuehl, Stefanie
    Herranz, Juan
    Henning, Sebastian
    Kuhn, Laura
    Asset, Tristan
    Guetaz, Laure
    Renou, Gilles
    Drnec, Jakub
    Bordet, Pierre
    Pasturel, Alain
    Eychmueller, Alexander
    Schmidt, Thomas J.
    Strasser, Peter
    Dubau, Laetitia
    Maillard, Frederic
    [J]. NATURE MATERIALS, 2018, 17 (09) : 827 - +
  • [27] Periodic trends in hydrodesulfurization: in support of the Sabatier principle
    Chianelli, RR
    Berhault, G
    Raybaud, P
    Kasztelan, S
    Hafner, J
    Toulhoat, H
    [J]. APPLIED CATALYSIS A-GENERAL, 2002, 227 (1-2) : 83 - 96
  • [28] Resonant active sites in catalytic ammonia synthesis: A structural model
    Cholach, Alexander R.
    Bryliakova, Anna A.
    Matveev, Andrey V.
    Bulgakov, Nikolai N.
    [J]. SURFACE SCIENCE, 2016, 645 : 41 - 48
  • [29] Elucidation of Pathways for NO Electroreduction on Pt(111) from First Principles
    Clayborne, Andre
    Chun, Hee-Joon
    Rankin, Rees B.
    Greeley, Jeff
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (28) : 8255 - 8258
  • [30] Pt Alloy Electrocatalysts for the Oxygen Reduction Reaction: From Model Surfaces to Nanostructured Systems
    Colic, Viktor
    Bandarenka, Aliaksandr S.
    [J]. ACS CATALYSIS, 2016, 6 (08): : 5378 - 5385