Using machine learning for crop yield prediction in the past or the future

被引:27
|
作者
Morales, Alejandro [1 ]
Villalobos, Francisco J. [2 ,3 ]
机构
[1] Wageningen Univ & Res, Ctr Crop Syst Anal, Plant Sci Grp, Wageningen, Netherlands
[2] Consejo Super Invest Cient IAS CSIC, Inst Agr Sostenible, Cordoba, Spain
[3] Univ Cordoba, Dept Agron, ETSIAM, Cordoba, Spain
来源
FRONTIERS IN PLANT SCIENCE | 2023年 / 14卷
关键词
machine learning; crop simulation model; wheat; sunflower; DSSAT; neural network; ARTIFICIAL NEURAL-NETWORKS; WHEAT; MODEL;
D O I
10.3389/fpls.2023.1128388
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The use of ML in agronomy has been increasing exponentially since the start of the century, including data-driven predictions of crop yields from farm-level information on soil, climate and management. However, little is known about the effect of data partitioning schemes on the actual performance of the models, in special when they are built for yield forecast. In this study, we explore the effect of the choice of predictive algorithm, amount of data, and data partitioning strategies on predictive performance, using synthetic datasets from biophysical crop models. We simulated sunflower and wheat data using OilcropSun and Ceres-Wheat from DSSAT for the period 2001-2020 in 5 areas of Spain. Simulations were performed in farms differing in soil depth and management. The data set of farm simulated yields was analyzed with different algorithms (regularized linear models, random forest, artificial neural networks) as a function of seasonal weather, management, and soil. The analysis was performed with Keras for neural networks and R packages for all other algorithms. Data partitioning for training and testing was performed with ordered data (i.e., older data for training, newest data for testing) in order to compare the different algorithms in their ability to predict yields in the future by extrapolating from past data. The Random Forest algorithm had a better performance (Root Mean Square Error 35-38%) than artificial neural networks (37-141%) and regularized linear models (64-65%) and was easier to execute. However, even the best models showed a limited advantage over the predictions of a sensible baseline (average yield of the farm in the training set) which showed RMSE of 42%. Errors in seasonal weather forecasting were not taken into account, so real-world performance is expected to be even closer to the baseline. Application of AI algorithms for yield prediction should always include a comparison with the best guess to evaluate if the additional cost of data required for the model compensates for the increase in predictive power. Random partitioning of data for training and validation should be avoided in models for yield forecasting. Crop models validated for the region and cultivars of interest may be used before actual data collection to establish the potential advantage as illustrated in this study.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Tackling Food Insecurity Using Remote Sensing and Machine Learning-Based Crop Yield Prediction
    Shafi, Uferah
    Mumtaz, Rafia
    Anwar, Zahid
    Ajmal, Muhammad Muzyyab
    Khan, Muhammad Ajmal
    Mahmood, Zahid
    Qamar, Maqsood
    Jhanzab, Hafiz Muhammad
    IEEE ACCESS, 2023, 11 : 108640 - 108657
  • [22] A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning
    Batool, Dania
    Shahbaz, Muhammad
    Asif, Hafiz Shahzad
    Shaukat, Kamran
    Alam, Talha Mahboob
    Hameed, Ibrahim A.
    Ramzan, Zeeshan
    Waheed, Abdul
    Aljuaid, Hanan
    Luo, Suhuai
    PLANTS-BASEL, 2022, 11 (15):
  • [23] Crop Classification and Yield Prediction Using Robust Machine Learning Models for Agricultural Sustainability
    Badshah, Abid
    Alkazemi, Basem Yousef
    Din, Fakhrud
    Zamli, Kamal Z.
    Haris, Muhammad
    IEEE ACCESS, 2024, 12 : 162799 - 162813
  • [24] REVIEW OF CROP YIELD ESTIMATION USING MACHINE LEARNING AND DEEP LEARNING TECHNIQUES
    Modi, Anitha
    Sharma, Priyanka
    Saraswat, Deepti
    Mehta, Rachana
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2022, 23 (02): : 59 - 80
  • [25] A Machine Learning Approach to Predict Crop Yield and Success Rate
    Kale, Shivani S.
    Patil, Preeti S.
    2019 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2019,
  • [26] Crop Yield Analysis Using Machine Learning Algorithms
    Haque, Fatin Farhan
    Abdelgawad, Ahmed
    Yanambaka, Venkata Prasanth
    Yelamarthi, Kumar
    2020 IEEE 6TH WORLD FORUM ON INTERNET OF THINGS (WF-IOT), 2020,
  • [27] Enhancing crop yield prediction through machine learning regression analysis
    Sharma, Seema
    Jain, Anupriya
    Sharma, Sachin
    Whig, Pawan
    INTERNATIONAL JOURNAL OF SUSTAINABLE AGRICULTURAL MANAGEMENT AND INFORMATICS, 2025, 11 (01)
  • [28] Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms
    Abbas, Farhat
    Afzaal, Hassan
    Farooque, Aitazaz A.
    Tang, Skylar
    AGRONOMY-BASEL, 2020, 10 (07):
  • [29] Sorghum Yield Prediction using Machine Learning
    Zannou, Judicael Geraud N.
    Houndji, Vinasetan Ratheil
    2019 3RD INTERNATIONAL CONFERENCE ON BIO-ENGINEERING FOR SMART TECHNOLOGIES (BIOSMART), 2019,
  • [30] Design of a precise ensemble expert system for crop yield prediction using machine learning analytics
    Tripathi, Deeksha
    Biswas, Saroj K.
    JOURNAL OF FORECASTING, 2024, 43 (08) : 3161 - 3176