Stochastic integration in Riemannian manifolds from a functional-analytic point of view

被引:1
作者
Mustatea, Alexandru [1 ]
机构
[1] Romanian Acad, Simion Stoilow Inst Math, POB 1-764, RO-014700 Bucharest, Romania
关键词
Stochastic integral; It? integral; Stratonovich integral; Riemannian manifold; FORMS;
D O I
10.1016/j.jfa.2023.109915
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article presents a construction of the concept of stochastic integration in Riemannian manifolds from a purely functional-analytic point of view. We show that there are infinitely many such integrals, and that any two of them are related by a simple formula. We also find that the Stratonovich and Ito integrals known to probability theorists are two instances of the general concept constructed herein.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:38
相关论文
共 16 条
[1]  
[Anonymous], 1980, One-Parameter Semigroups
[2]  
Bar C, 2011, Mat. Contemp., V40, P37
[3]  
Chavel Isaac, 2006, Cambridge studies in advanced mathematics
[4]   An Ito formula for a family of stochastic integrals and related Wong-Zakai theorems [J].
Da Pelo, Paolo ;
Lanconelli, Alberto ;
Stan, Aurel I. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (08) :3183-3200
[5]   APPROXIMATING ITO INTEGRALS OF DIFFERENTIAL FORMS AND GEODESIC DEVIATION [J].
DARLING, RWR .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1984, 65 (04) :563-572
[6]   STOCHASTIC INTEGRALS IN RIEMANN MANIFOLDS [J].
DUNCAN, TE .
JOURNAL OF MULTIVARIATE ANALYSIS, 1976, 6 (03) :397-413
[7]  
Elworthy K. D., 1982, London Mathematical Society Lecture Note Series
[8]  
Emery M., 1989, Stochastic Calculus on Manifolds
[9]  
Guneysu B, 2017, OPER THEORY ADV APPL, V264, P1, DOI 10.1007/978-3-319-68903-6
[10]  
HSU E. P., 2002, Stochastic analysis on manifolds