NUMERICAL ALGORITHM FOR THE COUPLED SYSTEM OF NONLINEAR VARIABLE-ORDER TIME FRACTIONAL SCHRODINGER EQUATIONS

被引:0
|
作者
Zaky, M. A. [1 ,2 ]
Hendy, A. S. [3 ]
Aldraiweesh, A. A. [2 ]
机构
[1] Natl Res Ctr, Dept Appl Math, Cairo 12622, Egypt
[2] King Saud Univ, Coll Educ, Educ Technol Dept, Riyadh, Saudi Arabia
[3] Ural Fed Univ, Inst Nat Sci & Math, Dept Computat Math & Comp Sci, 19 Mira St, Ekaterinburg 620002, Russia
关键词
Variable-order fractional derivative; Schrodinger equation; spectral method; finite difference method; OPERATIONAL MATRIX; GALERKIN METHOD; SPECTRAL METHOD; COLLOCATION; SCHEMES; QUANTUM;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A numerical simulation technique for the coupled system of variable -order time fractional nonlinear Schro center dot dinger equations is developed in this paper using the finite difference/spectral method. The finite difference method is adapted to dis-cretize the variable-order Caputo time-fractional derivative, and the spectral technique is used for spatial approximation. The significant advantage of the proposed algorithm is that the iterative procedure is not used to implement the nonlinear term in the cou-pled system. In addition, numerical experiments are performed in order to verify the accuracy of the method.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Yifei Wang
    Jin Huang
    Hu Li
    Numerical Algorithms, 2024, 95 : 1855 - 1877
  • [2] A Numerical Approach for the System of Nonlinear Variable-order Fractional Volterra Integral Equations
    Wang, Yifei
    Huang, Jin
    Li, Hu
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1855 - 1877
  • [3] Numerical simulations for fractional variable-order equations
    Mozyrska, Dorota
    Oziablo, Piotr
    IFAC PAPERSONLINE, 2018, 51 (04): : 853 - 858
  • [4] Time-space variable-order fractional nonlinear system of thermoelasticity: numerical treatment
    Taghreed A. Assiri
    Advances in Difference Equations, 2020
  • [5] Time-space variable-order fractional nonlinear system of thermoelasticity: numerical treatment
    Assiri, Taghreed A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [6] A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations
    Mohammad Hossein Heydari
    Zakieh Avazzadeh
    Yin Yang
    Carlo Cattani
    Computational and Applied Mathematics, 2020, 39
  • [7] A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations
    Heydari, Mohammad Hossein
    Avazzadeh, Zakieh
    Yang, Yin
    Cattani, Carlo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (01):
  • [8] A FAST AND PRECISE NUMERICAL ALGORITHM FOR A CLASS OF VARIABLE-ORDER FRACTIONAL DIFFERENTIAL EQUATIONS
    Bhrawyi, Ali H.
    Zaky, Mahmoud A.
    Abdel-Aty, Mahmoud
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2017, 18 (01): : 17 - 24
  • [9] Numerical simulation for a time-fractional coupled nonlinear Schrodinger equations
    Karaman, Bahar
    Dereli, Yilmaz
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (06) : 1233 - 1253
  • [10] Numerical treatments of the nonlinear coupled time-fractional Schrodinger equations
    Hadhoud, Adel R.
    Agarwal, Praveen
    Rageh, Abdulqawi A. M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (11) : 7119 - 7143