Mitochondrial cristae in health and disease

被引:23
|
作者
Huang, Cheng
Deng, Kun
Wu, Minghua
机构
[1] Cent South Univ, Hunan Canc Hosp, Changsha 410013, Hunan, Peoples R China
[2] Cent South Univ, Affiliated Canc Hosp, Xiangya Sch Med, Changsha 410013, Hunan, Peoples R China
[3] Cent South Univ, Xiangya Hosp, NHC Key Lab Carcinogenesis, Changsha 410008, Hunan, Peoples R China
[4] Cent South Univ, Canc Res Inst, Key Lab Carcinogenesis & Canc Invas, Minist Educ, Changsha 410008, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Mitochondria; Cristae ultrastructure; OPA1; MICOS; MICU1; ATP synthase; MICOS COMPONENT MIC60; OPTIC ATROPHY 1; ATP SYNTHASE; CONTACT SITE; OPA1; PROTEIN; FUSION; MITOFILIN; FISSION; CA2+;
D O I
10.1016/j.ijbiomac.2023.123755
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mitochondria are centers of energy metabolism. The mitochondrial network is shaped by mitochondrial dynamics, including the processes of mitochondrial fission and fusion and cristae remodeling. The cristae folded by the inner mitochondrial membrane are sites of the mitochondrial oxidative phosphorylation (OXPHOS) system. However, the factors and their coordinated interplay in cristae remodeling and linked human diseases have not been fully demonstrated. In this review, we focus on key regulators of cristae structure, including the mitochondrial contact site and cristae organizing system, optic atrophy-1, mitochondrial calcium uniporter, and ATP synthase, which function in the dynamic remodeling of cristae. We summarized their contribution to sustaining functional cristae structure and abnormal cristae morphology, including a decreased number of cristae, enlarged cristae junctions, and cristae as concentric ring structures. These abnormalities directly impact cellular respiration and are caused by dysfunction or deletion of these regulators in diseases such as Parkinson's disease, Leigh syndrome, and dominant optic atrophy. Identifying the important regulators of cristae morphology and understanding their role in sustaining mitochondrial morphology could be applied to explore the pathologies of diseases and to develop relevant therapeutic tools.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Expression of OPA1 and Mic60 genes and their association with mitochondrial cristae morphology in Tibetan sheep
    Wang, Guan
    He, Yanyu
    Luo, Yuzhu
    CELL AND TISSUE RESEARCH, 2019, 376 (02) : 273 - 279
  • [32] ATAD3 controls mitochondrial cristae structure in mouse muscle, influencing mtDNA replication and cholesterol levels
    Peralta, Susana
    Goffart, Steffi
    Williams, Sion L.
    Diaz, Francisca
    Garcia, Sofia
    Nissanka, Nadee
    Area-Gomez, Estela
    Pohjoismaki, Jaakko
    Moraes, Carlos T.
    JOURNAL OF CELL SCIENCE, 2018, 131 (13)
  • [33] Cristae formation is a mechanical buckling event controlled by the inner mitochondrial membrane lipidome
    Venkatraman, Kailash
    Lee, Christopher T.
    Garcia, Guadalupe C.
    Mahapatra, Arijit
    Milshteyn, Daniel
    Perkins, Guy
    Kim, Keun-Young
    Pasolli, H. Amalia
    Phan, Sebastien
    Lippincott-Schwartz, Jennifer
    Ellisman, Mark H.
    Rangamani, Padmini
    Budin, Itay
    EMBO JOURNAL, 2023, 42 (24)
  • [34] Cross-linking ATP synthase complexes in vivo eliminates mitochondrial cristae
    Gavin, PD
    Prescott, M
    Luff, SE
    Devenish, RJ
    JOURNAL OF CELL SCIENCE, 2004, 117 (11) : 2333 - 2343
  • [35] Defining Mitochondrial Cristae Morphology Changes Induced by Aging in Brown Adipose Tissue
    Crabtree, Amber
    Neikirk, Kit
    Marshall, Andrea G.
    Vang, Larry
    Whiteside, Aaron J.
    Williams, Qiana
    Altamura, Christopher T.
    Owens, Trinity Celeste
    Stephens, Dominique
    Shao, Bryanna
    Koh, Alice
    Killion, Mason
    Lopez, Edgar Garza
    Lam, Jacob
    Rodriguez, Ben
    Mungai, Margaret
    Stanley, Jade
    Dean, E. Danielle
    Koh, Ho-Jin
    Gaddy, Jennifer A.
    Scudese, Estevao
    Sweetwyne, Mariya T.
    Davis, Jamaine
    Zaganjor, Elma
    Murray, Sandra A.
    Katti, Prasanna
    Damo, Steven M.
    Vue, Zer
    Hinton Jr, Antentor
    ADVANCED BIOLOGY, 2024, 8 (01):
  • [36] Mitochondrial Cristae Shape Determines Respiratory Chain Supercomplexes Assembly and Respiratory Efficiency
    Cogliati, Sara
    Frezza, Christian
    Soriano, Maria Eugenia
    Varanita, Tatiana
    Quintana-Cabrera, Ruben
    Corrado, Mauro
    Cipolat, Sara
    Costa, Veronica
    Casarin, Alberto
    Gomes, Ligia C.
    Perales-Clemente, Ester
    Salviati, Leonardo
    Fernandez-Silva, Patricio
    Enriquez, Jose A.
    Scorrano, Luca
    CELL, 2013, 155 (01) : 160 - 171
  • [37] OPA1 overexpression ameliorates mitochondrial cristae remodeling, mitochondrial dysfunction, and neuronal apoptosis in prion diseases
    Wu, Wei
    Zhao, Deming
    Shah, Syed Zahid Ali
    Zhang, Xixi
    Lai, Mengyu
    Yang, Dongming
    Wu, Xiaoqian
    Guan, Zhiling
    Li, Jie
    Zhao, Huafen
    Li, Wen
    Gao, Hongli
    Zhou, Xiangmei
    Qiao, Jian
    Yang, Lifeng
    CELL DEATH & DISEASE, 2019, 10 (10)
  • [38] The growing importance of mitochondrial calcium in health and disease
    Boyman, Liron
    Williams, George S. B.
    Lederer, W. J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (36) : 11150 - 11151
  • [39] Ancient Homology of the Mitochondrial Contact Site and Cristae Organizing System Points to an Endosymbiotic Origin of Mitochondrial Cristae
    Munoz-Gomez, Sergio A.
    Slamovits, Claudio H.
    Dacks, Joel B.
    Baier, Kaitlyn A.
    Spencer, Katelyn D.
    Wideman, Jeremy G.
    CURRENT BIOLOGY, 2015, 25 (11) : 1489 - 1495
  • [40] Central Role of Mic10 in the Mitochondrial Contact Site and Cristae Organizing System
    Bohnert, Maria
    Zerbes, Ralf M.
    Davies, Karen M.
    Muehleip, Alexander W.
    Rampelt, Heike
    Horvath, Susanne E.
    Boenke, Thorina
    Kram, Anita
    Perschil, Inge
    Veenhuis, Marten
    Kuehlbrandt, Werner
    van der Klei, Ida J.
    Pfanner, Nikolaus
    van der Laan, Martin
    CELL METABOLISM, 2015, 21 (05) : 747 - 755