FINITE SIMPLE GROUPS WITH TWO MAXIMAL SUBGROUPS OF COPRIME ORDERS

被引:0
|
作者
Maslova, N., V [1 ,2 ]
机构
[1] Krasovskii Inst Math & Mech UB RAS, S Kovalevskaya Str 16, Yekaterinburs 620108, Russia
[2] Ural Fed Univ, Turgeneva Str 4, Yekaterinburs 620075, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
finite group; simple group; maximal subgroup; subgroups of coprime orders;
D O I
10.33048/semi.2023.020.071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1962, V. A. Belonogov proved that if a finite group G contains two maximal subgroups of coprime orders, then either G is one of known solvable groups or G is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups infinite simple groups we determine possibilities for triples (G, H, M), where G is a finite nonabelian simple group, H and M are maximal subgroups of G with (vertical bar H vertical bar, vertical bar M vertical bar) = 1.
引用
收藏
页码:1150 / 1159
页数:10
相关论文
共 50 条
  • [21] Finite groups with supersoluble subgroups of given orders
    Monakhov, V. S.
    Tyutyanov, V. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 155 - 163
  • [22] Influence of indices of the maximal subgroups of the finite simple groups on the structure of a finite group
    Li, XH
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) : 33 - 64
  • [23] Bounds on the Number of Maximal Subgroups of Finite Groups
    Adolfo Ballester-Bolinches
    Ramón Esteban-Romero
    Paz Jiménez-Seral
    Results in Mathematics, 2023, 78
  • [24] Finite Groups with Arithmetic Restrictions on Maximal Subgroups
    N. V. Maslova
    Algebra and Logic, 2015, 54 : 65 - 69
  • [25] Bounds on the Number of Maximal Subgroups of Finite Groups
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [26] On Prime Spectrum of Maximal Subgroups in Finite Groups
    Zhang, Chi
    Guo, Wenbin
    Maslova, Natalia V.
    Revin, Danila O.
    ALGEBRA COLLOQUIUM, 2018, 25 (04) : 579 - 584
  • [27] Finite groups with decomposable cofactors of maximal subgroups
    Lemeshev, I. V.
    Monakhov, V. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 181 - 188
  • [28] Maximal subgroups of odd index in finite groups with simple linear, unitary, or symplectic socle
    N. V. Maslova
    Algebra and Logic, 2011, 50 : 133 - 145
  • [29] MAXIMAL SUBGROUPS OF ODD INDEX IN FINITE GROUPS WITH SIMPLE LINEAR, UNITARY, OR SYMPLECTIC SOCLE
    Maslova, N. V.
    ALGEBRA AND LOGIC, 2011, 50 (02) : 133 - 145
  • [30] Classification of maximal subgroups of odd index in finite simple classical groups
    N. V. Maslova
    Proceedings of the Steklov Institute of Mathematics, 2009, 267 : 164 - 183