FINITE SIMPLE GROUPS WITH TWO MAXIMAL SUBGROUPS OF COPRIME ORDERS

被引:0
|
作者
Maslova, N., V [1 ,2 ]
机构
[1] Krasovskii Inst Math & Mech UB RAS, S Kovalevskaya Str 16, Yekaterinburs 620108, Russia
[2] Ural Fed Univ, Turgeneva Str 4, Yekaterinburs 620075, Russia
来源
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA | 2023年 / 20卷 / 02期
关键词
finite group; simple group; maximal subgroup; subgroups of coprime orders;
D O I
10.33048/semi.2023.020.071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1962, V. A. Belonogov proved that if a finite group G contains two maximal subgroups of coprime orders, then either G is one of known solvable groups or G is simple. In this short note based on results by M. Liebeck and J. Saxl on odd order maximal subgroups infinite simple groups we determine possibilities for triples (G, H, M), where G is a finite nonabelian simple group, H and M are maximal subgroups of G with (vertical bar H vertical bar, vertical bar M vertical bar) = 1.
引用
收藏
页码:1150 / 1159
页数:10
相关论文
共 50 条