Integration of Deep Reinforcement Learning with Collaborative Filtering for Movie Recommendation Systems

被引:8
作者
Peng, Sony [1 ]
Siet, Sophort [1 ]
Ilkhomjon, Sadriddinov [1 ]
Kim, Dae-Young [2 ]
Park, Doo-Soon [2 ]
机构
[1] Soonchunhyang Univ, Dept Software Convergence, Asan 31538, South Korea
[2] Soonchunhyang Univ, Dept Comp Sci & Engn, Asan 31538, South Korea
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 03期
基金
新加坡国家研究基金会;
关键词
recommendation system; deep reinforcement learning; collaborative filtering; cold start; COLD-START;
D O I
10.3390/app14031155
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the era of big data, effective recommendation systems are essential for providing users with personalized content and reducing search time on online platforms. Traditional collaborative filtering (CF) methods face challenges like data sparsity and the new-user or cold-start issue, primarily due to their reliance on limited user-item interactions. This paper proposes an innovative movie recommendation system that integrates deep reinforcement learning (DRL) with CF, employing the actor-critic method and the Deep Deterministic Policy Gradient (DDPG) algorithm. This integration enhances the system's ability to navigate the recommendation space effectively, especially for new users with less interaction data. The system utilizes DRL for making initial recommendations to new users and to generate optimal recommendation as more data becomes available. Additionally, singular value decomposition (SVD) is used for matrix factorization in CF, improving the extraction of detailed embeddings that capture the latent features of users and movies. This approach significantly increases recommendation precision and personalization. Our model's performance is evaluated using the MovieLens dataset with metrics like Precision, Recall, and F1 Score and demonstrates its effectiveness compared with existing recommendation benchmarks, particularly in addressing sparsity and new-user challenges. Several benchmarks of existing recommendation models are selected for the purpose of model comparison.
引用
收藏
页数:19
相关论文
共 33 条
[1]   Deep Reinforcement Learning A brief survey [J].
Arulkumaran, Kai ;
Deisenroth, Marc Peter ;
Brundage, Miles ;
Bharath, Anil Anthony .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (06) :26-38
[2]   Semantic audio content-based music recommendation and visualization based on user preference examples [J].
Bogdanov, Dmitry ;
Haro, Martin ;
Fuhrmann, Ferdinand ;
Xambo, Anna ;
Gomez, Emilia ;
Herrera, Perfecto .
INFORMATION PROCESSING & MANAGEMENT, 2013, 49 (01) :13-33
[3]  
Cheng H.-T., 2016, P 1 WORKSH DEEP LEAR, P7
[4]   Movie genome: alleviating new item cold start in movie recommendation [J].
Deldjoo, Yashar ;
Dacrema, Maurizio Ferrari ;
Constantin, L. Mihai Gabriel ;
Eghbal-Zadeh, Hamid ;
Cereda, Stefano ;
Schedl, Markus ;
Ionescu, Bogdan ;
Cremonesi, Paolo .
USER MODELING AND USER-ADAPTED INTERACTION, 2019, 29 (02) :291-343
[5]  
Deliu N., 2023, Quality & Quantity, P1, DOI [10.1007/s11135-023-01755-z, DOI 10.1007/S11135-023-01755-Z]
[6]   A review on reinforcement learning for contact-rich robotic manipulation tasks [J].
Elguea-Aguinaco, Inigo ;
Serrano-Munoz, Antonio ;
Chrysostomou, Dimitrios ;
Inziarte-Hidalgo, Ibai ;
Bogh, Simon ;
Arana-Arexolaleiba, Nestor .
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2023, 81
[7]   Recommendation System Using Autoencoders [J].
Ferreira, Diana ;
Silva, Sofia ;
Abelha, Antonio ;
Machado, Jose .
APPLIED SCIENCES-BASEL, 2020, 10 (16)
[8]   USING COLLABORATIVE FILTERING TO WEAVE AN INFORMATION TAPESTRY [J].
GOLDBERG, D ;
NICHOLS, D ;
OKI, BM ;
TERRY, D .
COMMUNICATIONS OF THE ACM, 1992, 35 (12) :61-70
[9]   The MovieLens Datasets: History and Context [J].
Harper, F. Maxwell ;
Konstan, Joseph A. .
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2016, 5 (04)
[10]  
Hug N., 2020, Journal of Open Source Software, V5, P2174, DOI DOI 10.21105/JOSS.02174