A federated distillation domain generalization framework for machinery fault diagnosis with data privacy

被引:11
|
作者
Zhao, Chao [1 ]
Shen, Weiming [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan 430074, Peoples R China
关键词
Fault diagnosis; Rotating machine; Federated learning; Domain generalization; Data privacy; NETWORK;
D O I
10.1016/j.engappai.2023.107765
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated learning is an emerging technology that enables multiple clients to cooperatively train an intelligent diagnostic model while preserving data privacy. However, federated diagnostic models still suffer from a performance drop when applied to entirely unseen clients outside the federation in practical deployments. To address this issue, a Federated Distillation Domain Generalization (FDDG) framework is proposed for machinery fault diagnosis. The core idea is to enable individual clients to access multi-client data distributions in a privacypreserving manner and further explore domain invariance to enhance model generalization. A novel diagnostic knowledge-sharing mechanism is designed based on knowledge distillation, which equips multiple generators to augment fake data during the training of local models. Based on generated data and real data, a low-rank decomposition method is utilized to mine domain invariance, enhancing the model's ability to resist domain shift. Extensive experiments on two rotating machines demonstrate that the proposed FDDG achieves a 3% improvement in accuracy compared to state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Dynamic feature separation domain generalization for bearing fault diagnosis
    Cai, Haichao
    Yang, Bo
    Xue, Yujun
    Li, Jubo
    Xu, Yanwei
    Yang, Xiaokang
    Ye, Jun
    ENGINEERING RESEARCH EXPRESS, 2024, 6 (04):
  • [42] Chemical fault diagnosis network based on single domain generalization
    Guo, Yu
    Zhang, Jundong
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 188 : 1133 - 1144
  • [43] FedITA: A cloud-edge collaboration framework for domain generalization-based federated fault diagnosis of machine-level industrial motors
    He, Yiming
    Shen, Weiming
    ADVANCED ENGINEERING INFORMATICS, 2024, 62
  • [44] Single domain generalization method based on anti-causal learning for rotating machinery fault diagnosis
    Zhang, Guowei
    Kong, Xianguang
    Wang, Qibin
    Du, Jingli
    Wang, Jinrui
    Ma, Hongbo
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 250
  • [45] Conditional Contrastive Domain Generalization for Fault Diagnosis
    Ragab, Mohamed
    Chen, Zhenghua
    Zhang, Wenyu
    Eldele, Emadeldeen
    Wu, Min
    Kwoh, Chee-Keong
    Li, Xiaoli
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [46] Multiple Source-Free Domain Adaptation Network Based on Knowledge Distillation for Machinery Fault Diagnosis
    Yue, Ke
    Li, Jipu
    Chen, Zhuyun
    Huang, Ruyi
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [47] Sparsity-Constrained Invariant Risk Minimization for Domain Generalization With Application to Machinery Fault Diagnosis Modeling
    Mo, Zhenling
    Zhang, Zijun
    Miao, Qiang
    Tsui, Kwok-Leung
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (03) : 1547 - 1559
  • [48] Fault diagnosis of marine machinery via an intelligent data-driven framework
    Xu, Xing 'ang
    Lin, Yan
    Ye, Chao
    OCEAN ENGINEERING, 2023, 289
  • [49] Federated Transfer Learning for Intelligent Fault Diagnostics Using Deep Adversarial Networks With Data Privacy
    Zhang, Wei
    Li, Xiang
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (01) : 430 - 439
  • [50] Federated Learning Based Fault Diagnosis of Power Transformer with Unbalanced Sample Data
    Guo F.
    Liu S.
    Wu X.
    Chen B.
    Zhang W.
    Ge Q.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2023, 47 (10): : 145 - 152