"The Sierpinski gasket minus its bottom line" as a tree of Sierpinski gaskets

被引:1
作者
Kigami, J. [1 ]
Takahashi, K. [2 ]
机构
[1] Kyoto Univ, Grad Sch Informat, Kyoto, Japan
[2] Zenkyoren, Tokyo, Japan
关键词
Sierpinski gasket; Shortest path metric; Trace; Jump kernel; DIRICHLET FORMS; HEAT KERNELS;
D O I
10.1007/s00209-023-03416-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Sierpinski gasket K has three line segments constituting a regular triangle as its border. This paper studies what will happen if one of them, which is called the bottom line and is denoted by I, is removed from K. At a glance, "the Sierpinski gasket minus the bottom line" K\I has a structure of a tree of Sierpinski gaskets. This observation leads us to the results showing that the boundary of K\I is not the line segment I but a Cantor set from viewpoints of geometry and analysis. As a by-product, we have an explicit expression of the jump kernel of the trace of the Brownian motion of K on the bottom line I.
引用
收藏
页数:32
相关论文
共 16 条
  • [1] [Anonymous], 2012, MEM AM MATH SOC, V216, P1
  • [2] BROWNIAN-MOTION ON THE SIERPINSKI GASKET
    BARLOW, MT
    PERKINS, EA
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) : 543 - 623
  • [3] Goldstein S., 1987, IMA VOL MATH APPL, P121
  • [4] ESTIMATES OF HEAT KERNELS FOR NON-LOCAL REGULAR DIRICHLET FORMS
    Grigor'yan, Alexander
    Hu, Jiaxin
    Lau, Ka-Sing
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (12) : 6397 - 6441
  • [5] Guo Z., 2014, ILLINOIS J MATH, V58, P497
  • [6] A trace theorem for the Dirichlet form on the Sierpinski gasket
    Jonsson, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2005, 250 (03) : 599 - 609
  • [7] Kajino N., 2013, Contemporary Math, V600, P91, DOI DOI 10.1090/CONM/600/11932
  • [8] Harmonic analysis for resistance forms
    Kigami, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 204 (02) : 399 - 444
  • [9] Kigami J., 1989, JAPAN J APPL MATH, V6, P259
  • [10] KIGAMI J., 2001, Cambridge Tracts in Mathematics, V143