Comparative Study for Optimized Deep Learning-Based Road Accidents Severity Prediction Models

被引:2
|
作者
Hijazi, Hussam [1 ]
Sattar, Karim [2 ]
Al-Ahmadi, Hassan M. [1 ,2 ]
El-Ferik, Sami [2 ,3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Civil & Environm Engn, Dhahran 31261, Saudi Arabia
[2] King Fahd Univ Petr & Minerals, Interdisciplinary Res Ctr Smart Mobil & Logist, Dhahran 31261, Saudi Arabia
[3] King Fahd Univ Petr & Minerals, Dept Control & Instrumentat Engn, Dhahran 31261, Saudi Arabia
关键词
Injury severity prediction; Deep learning; Feature importance; Bayesian optimization; Performance metrics; CRASH INJURY SEVERITY; ARTIFICIAL NEURAL-NETWORK; TRAFFIC ACCIDENTS; CLASSIFICATION;
D O I
10.1007/s13369-023-08510-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Road traffic accidents remain a major cause of fatalities and injuries worldwide. Effective classification of accident type and severity is crucial for prompt post-accident protocols and the development of comprehensive road safety policies. This study explores the application of deep learning techniques for predicting crash injury severity in the Eastern Province of Saudi Arabia. Five deep learning models were trained and evaluated, including various variants of feedforward multilayer perceptron, a back-propagated artificial neural network (ANN), an ANN with radial basis function (RPF), and tabular data learning network (TabNet). The models were optimized using Bayesian optimization (BO) and employed the synthetic minority oversampling technique (SMOTE) for oversampling the training dataset. While SMOTE enhanced balanced accuracy for ANN with RBF and TabNet, it compromised precision and increased recall. The results indicated that oversampling techniques did not consistently improve model performance. Additionally, significant features were identified using least absolute shrinkage and selection operator (LASSO) regularization, feature importance, and permutation importance. The results indicated that oversampling techniques did not consistently improve model performance. While SMOTE enhanced balanced accuracy for ANN with RBF and TabNet, it compromised precision and increased recall. The study's findings emphasize the consistent significance of the 'Number of Injuries Major' feature as a vital predictor in deep learning models, regardless of the selection techniques employed. These results shed light on the pivotal role played by the count of individuals with major injuries in influencing the severity of crash injuries, highlighting its potential relevance in shaping road safety policy development.
引用
收藏
页码:5853 / 5873
页数:21
相关论文
共 50 条
  • [21] Application of optimized machine learning techniques for prediction of occupational accidents
    Sarkar, Sobhan
    Vinay, Sammangi
    Raj, Rahul
    Maiti, J.
    Mitra, Pabitra
    COMPUTERS & OPERATIONS RESEARCH, 2019, 106 : 210 - 224
  • [22] Prevention of smombie accidents using deep learning-based object detection
    Kim, Hyun-Seok
    Kim, Geon-Hwan
    Cho, You-Ze
    ICT EXPRESS, 2022, 8 (04): : 618 - 625
  • [23] Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach
    Lee, Yonghyun
    Kim, Eunchan
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2024, 18 (01): : 30 - 45
  • [24] MRI Deep Learning-Based Solution for Alzheimer's Disease Prediction
    Saratxaga, Cristina L.
    Moya, Iratxe
    Picon, Artzai
    Acosta, Marina
    Moreno-Fernandez-de-Leceta, Aitor
    Garrote, Estibaliz
    Bereciartua-Perez, Arantza
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [25] A Deep Learning-Based Approach for Road Surface Damage Detection
    Kulambayev, Bakhytzhan
    Beissenova, Gulbakhram
    Katayev, Nazbek
    Abduraimova, Bayan
    Zhaidakbayeva, Lyazzat
    Sarbassova, Alua
    Akhmetova, Oxana
    Issayev, Sapar
    Suleimenova, Laura
    Kasenov, Syrym
    Shadinova, Kunsulu
    Shyrakbayev, Abay
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (02): : 3403 - 3418
  • [26] DeepBSRPred: deep learning-based binding site residue prediction for proteins
    Nikam, Rahul
    Yugandhar, Kumar
    Gromiha, M. Michael
    AMINO ACIDS, 2023, 55 (10) : 1305 - 1316
  • [27] Optimized models and deep learning methods for drug response prediction in cancer treatments: a review
    Hajim, Wesam Ibrahim
    Zainudin, Suhaila
    Daud, Kauthar Mohd
    Alheeti, Khattab
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [28] Deep Learning-Based Frameworks for Semantic Segmentation of Road Scenes
    Alokasi, Haneen
    Ahmad, Muhammad Bilal
    ELECTRONICS, 2022, 11 (12)
  • [29] DEEP JOINT RP-NET-BASED SEGMENTATION ALGORITHM AND OPTIMIZED DEEP LEARNING FOR SEVERITY PREDICTION OF BRAIN TUMOR
    Kumar, R. Ramesh
    Nalinipriya, Ganapathi
    Vidyadhari, Ch
    Elwin, J. Granty Regina
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [30] Deep Learning-Based Traffic Prediction for Network Optimization
    Troia, Sebastian
    Alvizu, Rodolfo
    Zhou, Youduo
    Maier, Guido
    Pattavina, Achille
    2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON), 2018,