Unification of Gravity and Internal Interactions

被引:4
|
作者
Konitopoulos, Spyros [1 ]
Roumelioti, Danai [2 ]
Zoupanos, George [2 ,3 ,4 ,5 ]
机构
[1] NCSR Demokritos, Inst Nucl & Particle Phys, Patr Gregoriou E & 27 Neapoleos Str, Athens 15341, Agia Paraskevi, Greece
[2] Natl Tech Univ Athens, Phys Dept, 9 Iroon Polytech St, Athens 15780, Zografou, Greece
[3] CERN, Theory Dept, CH-1211 Geneva, Switzerland
[4] Max Planck Inst Phys & Astrophys, 6 Fohringer Ring, D-80805 Munich, Germany
[5] Heidelberg Univ, Inst Theoret Phys, 16 Philosophenweg, D-69120 Heidelberg, Germany
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 2024年 / 72卷 / 01期
关键词
gauge gravity; grand unification; gravity as gauge theory; SO10 grand unified theory; unification; DIMENSIONAL REDUCTION; RENORMALIZATION; SYMMETRIES;
D O I
10.1002/prop.202300226
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the gauge theoretic approach of gravity, general relativity is described by gauging the symmetry of the tangent manifold in four dimensions. Usually the dimension of the tangent space is considered to be equal to the dimension of the curved manifold. However, the tangent group of a manifold of dimension d is not necessarily SOd. It has been suggested earlier that by gauging an enlarged symmetry of the tangent space in four dimensions one could unify gravity with internal interactions. Here, such a unified model is considered by gauging the SO(1,17) as the extended Lorentz group overcoming in this way some difficulties of the previous attempts of similar unification and eventually obtained the SO10 GUT, supplemented by an SU2 x SU2 global symmetry.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] INTERNAL SUPERSYMMETRY AND UNIFICATION
    NEEMAN, Y
    STERNBERG, S
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1980, 77 (06): : 3127 - 3131
  • [22] NONLINEAR-INTERACTIONS AMONG INTERNAL GRAVITY-WAVES
    MULLER, P
    HOLLOWAY, G
    HENYEY, F
    POMPHREY, N
    REVIEWS OF GEOPHYSICS, 1986, 24 (03) : 493 - 536
  • [23] A model for nonlinear interactions of internal gravity waves with saturated regions
    Ruprecht, Daniel
    Klein, Rupert
    METEOROLOGISCHE ZEITSCHRIFT, 2011, 20 (02) : 243 - 252
  • [24] Gauge principle revisited: Towards a unification of space-time and internal gauge interactions
    Aldaya, V
    Jaramillo, JL
    Guerrero, J
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (11) : 5166 - 5184
  • [25] Unification of electromagnetic interactions and gravitational interactions
    Wu, N
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 38 (03) : 322 - 326
  • [26] On the Geometric Unification of Gravity and Dark Energy
    Koorambas, E.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (09) : 2863 - 2870
  • [27] A Geometric Framework for Unification of Gravity and Electromagnetism
    Gh. Fasihi Ramandi
    Gravitation and Cosmology, 2021, 27 : 113 - 119
  • [28] GAUGE: the GrAnd Unification and Gravity Explorer
    Amelino-Camelia, G.
    Aplin, K.
    Arndt, M.
    Barrow, J. D.
    Bingham, R. J.
    Borde, C.
    Bouyer, P.
    Caldwell, M.
    Cruise, A. M.
    Damour, T.
    D'Arrigo, P.
    Dittus, H.
    Ertmer, W.
    Foulon, B.
    Gill, P.
    Hammond, G. D.
    Hough, J.
    Jentsch, C.
    Johann, U.
    Jetzer, P.
    Klein, H.
    Lambrecht, A.
    Lamine, B.
    Laemmerzahl, C.
    Lockerbie, N.
    Loeffler, F.
    Mendonca, J. T.
    Mester, J.
    Ni, W. -T.
    Pegrum, C.
    Peters, A.
    Rasel, E.
    Reynaud, S.
    Shaul, D.
    Sumner, T. J.
    Theil, S.
    Torrie, C.
    Touboul, P.
    Trenkel, C.
    Vitale, S.
    Vodel, W.
    Wang, C.
    Ward, H.
    Woodgate, A.
    EXPERIMENTAL ASTRONOMY, 2009, 23 (02) : 549 - 572
  • [29] Induced gravity II: grand unification
    Einhorn, Martin B.
    Jones, D. R. Timothy
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05):
  • [30] Induced gravity II: grand unification
    Martin B. Einhorn
    D.R. Timothy Jones
    Journal of High Energy Physics, 2016