INTERACTIVE AUTOENCODERS WITH DEGRADATION CONSTRAINT FOR HYPERSPECTRAL SUPER-RESOLUTION

被引:2
|
作者
Li, Jiaxin [1 ,2 ]
Zheng, Ke [3 ]
Gao, Lianru [1 ]
Ni, Li [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Liaocheng Univ, Coll Geog & Environm, Liaocheng, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
国家重点研发计划;
关键词
Deep learning; hyperspectral; multispectral; super-resolution;
D O I
10.1109/IGARSS52108.2023.10282922
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Owing to the strong ability of feature extraction and representation, deep learning has exhibited powerful potential in the field of multispectral-aided hyperspectral super-resolution (MS-aided HS-SR). Though great strides have been made by existing methods, their superior performance mainly drives from large training datasets, hence failing to handle the real cases with limited samples. In this article, we propose an unsupervised method inspired by the theory of spectral mixing, which is based solely on one pair of HS-MS correspondence. Specifically, two coupled autoencoders are employed as the backbone of our network, aiming at deriving the latent abundance representations and corresponding endmembers of input HS-MS data. To enrich the feature representations and guide the network learning, we embed an interactive module into the encoder part to enhance the information transmission and design a degradation loss to constrain the target image. Experiments in Chikusei dataset demonstrate the effectiveness of our proposed method.
引用
收藏
页码:7447 / 7450
页数:4
相关论文
共 50 条
  • [41] A Super-Resolution and Fusion Approach to Enhancing Hyperspectral Images
    Kwan, Chiman
    Choi, Joon Hee
    Chan, Stanley H.
    Zhou, Jin
    Budavari, Bence
    REMOTE SENSING, 2018, 10 (09)
  • [42] NonRegSRNet: A Nonrigid Registration Hyperspectral Super-Resolution Network
    Zheng, Ke
    Gao, Lianru
    Hong, Danfeng
    Zhang, Bing
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Quantum Limits of super-resolution via Sparsity Constraint
    Wang, Hui
    Han, Shensheng
    Kolobov, Mikhail I.
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING X, 2012, 8518
  • [44] Evaluation of super-resolution algorithms for mosaic hyperspectral imagery
    Nieuwenhuizen, Robert
    Schottner, Michel
    Pruim, Raimon
    van Dijk, Roelof
    van de Stap, Nanda
    Schutte, Klamer
    EMERGING IMAGING AND SENSING TECHNOLOGIES FOR SECURITY AND DEFENCE IV, 2019, 11163
  • [45] Multilevel Interaction Embedding for Hyperspectral Image Super-Resolution
    Zhang, Mingjian
    Zheng, Ling
    Weng, Shizhuang
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 59 - 61
  • [46] SUPER-RESOLUTION: AN EFFICIENT METHOD TO IMPROVE SPATIAL RESOLUTION OF HYPERSPECTRAL IMAGES
    Villa, A.
    Chanussot, J.
    Benediktsson, J. A.
    Ulfarsson, M.
    Jutten, C.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 2003 - 2006
  • [47] Semisupervised Spectral Degradation Constrained Network for Spectral Super-Resolution
    Chen, Wenjing
    Zheng, Xiangtao
    Lu, Xiaoqiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [48] Deep Posterior Distribution-Based Embedding for Hyperspectral Image Super-Resolution
    Hou, Jinhui
    Zhu, Zhiyu
    Hou, Junhui
    Zeng, Huanqiang
    Wu, Jinjian
    Zhou, Jiantao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5720 - 5732
  • [49] Separable-spectral convolution and inception network for hyperspectral image super-resolution
    Zheng, Ke
    Gao, Lianru
    Ran, Qiong
    Cui, Ximin
    Zhang, Bing
    Liao, Wenzhi
    Jia, Sen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (10) : 2593 - 2607
  • [50] Noise Prior Knowledge Informed Bayesian Inference Network for Hyperspectral Super-Resolution
    Dong, Wenqian
    Qu, Jiahui
    Xiao, Song
    Zhang, Tongzhen
    Li, Yunsong
    Jia, Xiuping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3121 - 3135