INTERACTIVE AUTOENCODERS WITH DEGRADATION CONSTRAINT FOR HYPERSPECTRAL SUPER-RESOLUTION

被引:2
|
作者
Li, Jiaxin [1 ,2 ]
Zheng, Ke [3 ]
Gao, Lianru [1 ]
Ni, Li [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Computat Opt Imaging Technol, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Liaocheng Univ, Coll Geog & Environm, Liaocheng, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
国家重点研发计划;
关键词
Deep learning; hyperspectral; multispectral; super-resolution;
D O I
10.1109/IGARSS52108.2023.10282922
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Owing to the strong ability of feature extraction and representation, deep learning has exhibited powerful potential in the field of multispectral-aided hyperspectral super-resolution (MS-aided HS-SR). Though great strides have been made by existing methods, their superior performance mainly drives from large training datasets, hence failing to handle the real cases with limited samples. In this article, we propose an unsupervised method inspired by the theory of spectral mixing, which is based solely on one pair of HS-MS correspondence. Specifically, two coupled autoencoders are employed as the backbone of our network, aiming at deriving the latent abundance representations and corresponding endmembers of input HS-MS data. To enrich the feature representations and guide the network learning, we embed an interactive module into the encoder part to enhance the information transmission and design a degradation loss to constrain the target image. Experiments in Chikusei dataset demonstrate the effectiveness of our proposed method.
引用
收藏
页码:7447 / 7450
页数:4
相关论文
共 50 条
  • [1] Enhanced Autoencoders With Attention-Embedded Degradation Learning for Unsupervised Hyperspectral Image Super-Resolution
    Gao, Lianru
    Li, Jiaxin
    Zheng, Ke
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [2] HYPERSPECTRAL IMAGE SUPER-RESOLUTION WITH DEEP PRIORS AND DEGRADATION MODEL INVERSION
    Wang, Xiuheng
    Chen, Jie
    Richard, Cedric
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 2814 - 2818
  • [3] Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution
    Liu, Yaoting
    Hu, Jianwen
    Kang, Xudong
    Luo, Jing
    Fan, Shaosheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [4] X-Shaped Interactive Autoencoders With Cross-Modality Mutual Learning for Unsupervised Hyperspectral Image Super-Resolution
    Li, Jiaxin
    Zheng, Ke
    Li, Zhi
    Gao, Lianru
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] Super-resolution reconstruction of hyperspectral images
    Akgun, T
    Altunbasak, Y
    Mersereau, RM
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) : 1860 - 1875
  • [6] COUPLED HYPERSPECTRAL SUPER-RESOLUTION AND UNMIXING
    Zhao, Yongqiang
    Yi, Chen
    Yang, Jingxiang
    Chan, Jonathan Cheung-Wai
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 2641 - 2644
  • [7] Optimization-Based Hyperspectral Spatiotemporal Super-Resolution
    Chang, Pai-Chuan
    Lin, Jhao-Ting
    Lin, Chia-Hsiang
    Tang, Po-Wei
    Liu, Yangrui
    IEEE ACCESS, 2022, 10 : 37477 - 37494
  • [8] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [9] Hyperspectral super-resolution via coupled tensor ring factorization
    He, Wei
    Chen, Yong
    Yokoya, Naoto
    Li, Chao
    Zhao, Qibin
    PATTERN RECOGNITION, 2022, 122
  • [10] IMAGE FUSION FOR HYPERSPECTRAL IMAGE SUPER-RESOLUTION
    Irmak, Hasan
    Akar, Gozde Bozdagi
    Yuksel, Seniha Esen
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,