Learning-based Sustainable Multi-User Computation Offloading for Mobile Edge-Quantum Computing

被引:2
作者
Xu, Minrui [1 ]
Niyato, Dusit [1 ]
Kang, Jiawen [2 ]
Xiong, Zehui [3 ]
Chen, Mingzhe [4 ,5 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[2] Guangdong Univ Technol, Sch Automat, Guangzhou, Guangdong, Peoples R China
[3] Singapore Univ Technol & Design, Pillar Informat Syst Technol & Design, Singapore 487372, Singapore
[4] Univ Miami, Dept Elect & Comp Engn, Coral Gables, FL 33146 USA
[5] Univ Miami, Inst Data Sci & Comp, Coral Gables, FL 33146 USA
来源
ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS | 2023年
基金
新加坡国家研究基金会;
关键词
Mobile edge computing; quantum computing; computation offloading; deep reinforcement learning;
D O I
10.1109/ICC45041.2023.10278824
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper, a novel paradigm of mobile edge-quantum computing (MEQC) is proposed, which brings quantum computing capacities to mobile edge networks that are closer to mobile users (i.e., edge devices). First, we propose an MEQC system model where mobile users can offload computational tasks to scalable quantum computers via edge servers with cryogenic components and fault-tolerant schemes. Second, we show that it is NP-hard to obtain a centralized solution to the partial offloading problem in MEQC in terms of the optimal latency and energy cost of classical and quantum computing. Third, we propose a multi-agent hybrid discrete-continuous deep reinforcement learning using proximal policy optimization to learn the long-term sustainable offloading strategy without prior knowledge. Finally, experimental results demonstrate that the proposed algorithm can reduce at least 30% of the cost compared with the existing baseline solutions under different system settings.
引用
收藏
页码:4045 / 4050
页数:6
相关论文
共 15 条
[1]   Noisy intermediate-scale quantum algorithms [J].
Bharti, Kishor ;
Cervera-Lierta, Alba ;
Kyaw, Thi Ha ;
Haug, Tobias ;
Alperin-Lea, Sumner ;
Anand, Abhinav ;
Degroote, Matthias ;
Heimonen, Hermanni ;
Kottmann, Jakob S. ;
Menke, Tim ;
Mok, Wai-Keong ;
Sim, Sukin ;
Kwek, Leong-Chuan ;
Aspuru-Guzik, Alan .
REVIEWS OF MODERN PHYSICS, 2022, 94 (01)
[2]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[3]   Distributed Learning in Wireless Networks: Recent Progress and Future Challenges [J].
Chen, Mingzhe ;
Gunduz, Deniz ;
Huang, Kaibin ;
Saad, Walid ;
Bennis, Mehdi ;
Feljan, Aneta Vulgarakis ;
Poor, H. Vincent .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (12) :3579-3605
[4]   A Joint Learning and Communications Framework for Federated Learning Over Wireless Networks [J].
Chen, Mingzhe ;
Yang, Zhaohui ;
Saad, Walid ;
Yin, Changchuan ;
Poor, H. Vincent ;
Cui, Shuguang .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (01) :269-283
[5]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[6]  
Fellous-Asiani M., 2022, ARXIV220905469
[7]  
Herman D., 2022, ARXIV220102773
[8]   Realizing repeated quantum error correction in a distance-three surface code [J].
Krinner, Sebastian ;
Lacroix, Nathan ;
Remm, Ants ;
Di Paolo, Agustin ;
Genois, Elie ;
Leroux, Catherine ;
Hellings, Christoph ;
Lazar, Stefania ;
Swiadek, Francois ;
Herrmann, Johannes ;
Norris, Graham J. ;
Andersen, Christian Kraglund ;
Mueller, Markus ;
Blais, Alexandre ;
Eichler, Christopher ;
Wallraff, Andreas .
NATURE, 2022, 605 (7911) :669-+
[9]  
Martin M. J., 2022, IEEE T SUSTAINABLE C
[10]  
Neunert Michael, 2020, PROC C ROBOT LEARNIN, P735