On flexible block Chebyshev-Davidson method for solving symmetric generalized eigenvalue problems

被引:1
作者
Miao, Cun-Qiang [1 ]
Cheng, Lan [2 ]
机构
[1] Cent South Univ, Sch Math & Stat, Hunan Key Lab Analyt Math & Applicat, Changsha 410083, Peoples R China
[2] Hunan First Normal Univ, Sch Math & Stat, Changsha 410205, Peoples R China
关键词
Generalized eigenvalue problem; Block method; Davidson method; Chebyshev polynomial; COMPUTING EIGENVALUES; LANCZOS-ALGORITHM; CONVERGENCE; RESTART;
D O I
10.1007/s10444-023-10078-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In a recent work (J. Sci. Comput. 85 (2020), no. 3), the author generalized the Chebyshev-Davidson method appeared in standard eigenvalue problems to symmetric generalized eigenvalue problems. The theoretical derivation indicates that the Chebyshev-Davidson method for symmetric generalized eigenvalue problems only admits local convergence; thus, in this paper, we adopt a flexible strategy to improve the global convergence and to save number of iteration steps. Moreover, the deflation technique used for computing several eigenpairs in the proposed Chebyshev-Davidson method cannot be implemented in parallel; therefore, we construct a flexible block Chebyshev-Davidson method for computing several eigenpairs of symmetric generalized eigenvalue problems. The block implementation is important in scientific computing since it allows parallelism and efficient use of local memory. Numerical experiments are carried out to show great superiority and robustness over some state-of-the-art iteration methods.
引用
收藏
页数:28
相关论文
共 35 条
[1]   On convergence of iterative projection methods for symmetric eigenvalue problems [J].
Aishima, Kensuke .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 311 :513-521
[3]   A Rayleigh-Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices [J].
Anderson, Christopher R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7477-7487
[4]   Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations [J].
Banerjee, Amartya S. ;
Lin, Lin ;
Hu, Wei ;
Yang, Chao ;
Pask, John E. .
JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (15)
[5]   Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory [J].
Bekas, C. ;
Kokiopoulou, E. ;
Saad, Yousef .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (01) :397-418
[6]   NEW ITERATIVE METHODS FOR SOLUTION OF EIGENPROBLEM [J].
BRADBURY, WW ;
FLETCHER, R .
NUMERISCHE MATHEMATIK, 1966, 9 (03) :259-&
[7]   THE DAVIDSON METHOD [J].
CROUZEIX, M ;
PHILIPPE, B ;
SADKANE, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01) :62-76
[8]   ITERATIVE CALCULATION OF A FEW OF LOWEST EIGENVALUES AND CORRESPONDING EIGENVECTORS OF LARGE REAL-SYMMETRIC MATRICES [J].
DAVIDSON, ER .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :87-94
[9]   A FILTERED LANCZOS PROCEDURE FOR EXTREME AND INTERIOR EIGENVALUE PROBLEMS [J].
Fang, Haw-Ren ;
Saad, Yousef .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (04) :A2220-A2246
[10]   Jacobi-Davidson style QR and QZ algorithms for the reduction of matrix pencils [J].
Fokkema, DR ;
Sleijpen, GLG ;
Van der Vorst, HA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :94-125