A Verified Optimizer for Quantum Circuits

被引:1
|
作者
Hietala, Kesha [1 ,2 ]
Rand, Robert [3 ]
Li, Liyi [1 ]
Hung, Shih-Han [4 ]
Wu, Xiaodi [1 ]
Hicks, Michael [1 ,2 ]
机构
[1] Univ Maryland, Baltimore, MD USA
[2] Univ Amazon, Seattle, WA USA
[3] Univ Chicago, Chicago, IL USA
[4] Univ Texas Austin, Austin, TX USA
来源
ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS | 2023年 / 45卷 / 03期
关键词
Formal verification; quantum computing; circuit optimization; certified compilation;
D O I
10.1145/3604630
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present voqc, the first verified optimizer for quantum circuits, written using the Coq proof assistant. Quantum circuits are expressed as programs in a simple, low-level language called sqir, a small quantum intermediate representation, which is deeply embedded in Coq. Optimizations and other transformations are expressed as Coq functions, which are proved correct with respect to a semantics of sqir programs. sqir programs denote complex-valued matrices, as is standard in quantum computation, but we treat matrices symbolically to reason about programs that use an arbitrary number of quantum bits. sqir's careful design and our provided automation make it possible to write and verify a broad range of optimizations in voqc, including full-circuit transformations from cutting-edge optimizers.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] A Verified Optimizer for Quantum Circuits
    Hietala, Kesha
    Rand, Robert
    Hung, Shih-Han
    Wu, Xiaodi
    Hicks, Michael
    PROCEEDINGS OF THE ACM ON PROGRAMMING LANGUAGES-PACMPL, 2021, 5 (POPL):
  • [2] Configurable sublinear circuits for quantum state preparation
    Araujo, Israel F.
    Park, Daniel K.
    Ludermir, Teresa B.
    Oliveira, Wilson R.
    Petruccione, Francesco
    da Silva, Adenilton J.
    QUANTUM INFORMATION PROCESSING, 2023, 22 (02)
  • [3] Configurable sublinear circuits for quantum state preparation
    Israel F. Araujo
    Daniel K. Park
    Teresa B. Ludermir
    Wilson R. Oliveira
    Francesco Petruccione
    Adenilton J. da Silva
    Quantum Information Processing, 22
  • [4] Optimizing the optimizer: decomposition techniques for quantum annealing
    Bass, Gideon
    Henderson, Maxwell
    Heath, Joshua
    Dulny, Joseph, III
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [5] Optimizing the optimizer: decomposition techniques for quantum annealing
    Gideon Bass
    Maxwell Henderson
    Joshua Heath
    Joseph Dulny
    Quantum Machine Intelligence, 2021, 3
  • [6] Equivalence Checking of Quantum Circuits With the ZX-Calculus
    Peham, Tom
    Burgholzer, Lukas
    Wille, Robert
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2022, 12 (03) : 662 - 675
  • [7] Sparse Quantum Codes From Quantum Circuits
    Bacon, Dave
    Flammia, Steven T.
    Harrow, Aram W.
    Shi, Jonathan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (04) : 2464 - 2479
  • [8] QSHO: Quantum spotted hyena optimizer for global optimization
    Si, Tapas
    Miranda, Pericles B. C.
    Nandi, Utpal
    Jana, Nanda Dulal
    Maulik, Ujjwal
    Mallik, Saurav
    Shah, Mohd Asif
    ARTIFICIAL INTELLIGENCE REVIEW, 2025, 58 (03)
  • [9] Modelling Quantum Circuits with UML
    Perez-Castillo, Ricardo
    Jimenez-Navajas, Luis
    Piattini, Mario
    2021 IEEE/ACM 2ND INTERNATIONAL WORKSHOP ON QUANTUM SOFTWARE ENGINEERING (Q-SE 2021), 2021, : 7 - 12
  • [10] Testing and Debugging Quantum Circuits
    Metwalli, Sara Ayman
    Van Meter, Rodney
    IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2024, 5 : 1 - 15