A Genuine Multipartite Entanglement Measure Generated by the Parametrized Entanglement Measure

被引:2
作者
Shi, Xian [1 ]
Chen, Lin [2 ,3 ]
机构
[1] Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
[2] Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
[3] Beihang Univ, Int Res Inst Multidisciplinary Sci, Beijing 100191, Peoples R China
基金
中央高校基本科研业务费专项资金资助;
关键词
entanglement measure; genuine multipartite entanglement; Greenberger-Horne-Zeilinger state; QUANTUM; STATE;
D O I
10.1002/andp.202300305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A genuine multipartite entanglement measure based on the geometric method is investigated in this paper. This measure has desirable properties for quantifying the genuine multipartite entanglement. A lower bound of the genuine multipartite entanglement measure derived with the fidelity-based method is then presented. The advantages of the measure proposed here with other measures are also presented. At last, examples are presented to show that the genuine entanglement measure has distinct entanglement ordering from other measures. Here, a genuine multipartite entanglement measure based on the geometric method is investigated. This measure is subadditive and continuous for pure states. Moreover, it is smooth, while the generalized geometric measure and genuinely multipartite concurrence are not. A lower bound of the genuine multipartite entanglement measure derived with the fidelity-based method is also presented.image
引用
收藏
页数:9
相关论文
共 55 条
  • [1] Absolutely maximally entangled states, quantum-maximum-distance-separable codes, and quantum repeaters
    Alsina, Daniel
    Razavi, Mohsen
    [J]. PHYSICAL REVIEW A, 2021, 103 (02)
  • [2] Fusion-based quantum computation
    Bartolucci, Sara
    Birchall, Patrick
    Bombin, Hector
    Cable, Hugo
    Dawson, Chris
    Gimeno-Segovia, Mercedes
    Johnston, Eric
    Kieling, Konrad
    Nickerson, Naomi
    Pant, Mihir
    Pastawski, Fernando
    Rudolph, Terry
    Sparrow, Chris
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [3] Computable and Operationally Meaningful Multipartite Entanglement Measures
    Beckey, Jacob L.
    Gigena, N.
    Coles, Patrick J.
    Cerezo, M.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [4] COMMUNICATION VIA ONE-PARTICLE AND 2-PARTICLE OPERATORS ON EINSTEIN-PODOLSKY-ROSEN STATES
    BENNETT, CH
    WIESNER, SJ
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (20) : 2881 - 2884
  • [5] TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS
    BENNETT, CH
    BRASSARD, G
    CREPEAU, C
    JOZSA, R
    PERES, A
    WOOTTERS, WK
    [J]. PHYSICAL REVIEW LETTERS, 1993, 70 (13) : 1895 - 1899
  • [6] Bounds on general entropy measures
    Berry, DW
    Sanders, BC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (49): : 12255 - 12265
  • [7] Bhatia R., 2013, MATRIX ANAL, V169, DOI 10.1007/978-1-4612-0653-8
  • [8] Hierarchies of geometric entanglement
    Blasone, M.
    Dell'Anno, F.
    De Siena, S.
    Illuminati, F.
    [J]. PHYSICAL REVIEW A, 2008, 77 (06):
  • [9] Concurrence of arbitrary dimensional bipartite quantum states
    Chen, K
    Albeverio, S
    Fei, SM
    [J]. PHYSICAL REVIEW LETTERS, 2005, 95 (04)
  • [10] Distributed entanglement
    Coffman, V
    Kundu, J
    Wootters, WK
    [J]. PHYSICAL REVIEW A, 2000, 61 (05): : 5