The dominant instability of near-extreme Stokes waves

被引:8
作者
Deconinck, Bernard [1 ]
Dyachenko, Sergey A. [2 ]
Lushnikov, Pavel M. [3 ]
Semenova, Anastassiya [1 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[3] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
关键词
gravity waves; free surface dynamics; stability; Stokes wave; DEEP-WATER; FINITE-AMPLITUDE; GRAVITY-WAVES; FREE-SURFACE; IDEAL FLUID; SINGULARITIES; DYNAMICS;
D O I
10.1073/pnas.2308935120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The instability of Stokes waves, steady propagating waves on the surface of an ideal fluid of infinite depth, is a fundamental problem in the field of nonlinear science. The dominant instability of these waves depends on their steepness. For small amplitude waves, it is well known that the Benjamin-Feir or modulational instability dominates the dynamics of a wave train. We demonstrate that for steeper waves, an instability caused by disturbances localized at the wave crest vastly surpasses the growth rate of the modulational instability. These dominant localized disturbances are either coperiodic with the Stokes wave or have twice its period. In either case, the nonlinear evolution of the instability leads to the formation of plunging breakers. This phenomenon explains why long propagating ocean swell consists of small-amplitude waves.
引用
收藏
页数:7
相关论文
共 61 条
[1]   ON THE STOKES CONJECTURE FOR THE WAVE OF EXTREME FORM [J].
AMICK, CJ ;
FRAENKEL, LE ;
TOLAND, JF .
ACTA MATHEMATICA, 1982, 148 :193-214
[2]   Singularities in the complex physical plane for deep water waves [J].
Baker, Gregory R. ;
Xie, Chao .
JOURNAL OF FLUID MECHANICS, 2011, 685 :83-116
[3]   Linking Reduced Breaking Crest Speeds to Unsteady Nonlinear Water Wave Group Behavior [J].
Banner, M. L. ;
Barthelemy, X. ;
Fedele, F. ;
Allis, M. ;
Benetazzo, A. ;
Dias, F. ;
Peirson, W. L. .
PHYSICAL REVIEW LETTERS, 2014, 112 (11)
[4]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[5]   Full description of Benjamin-Feir instability of stokes waves in deep water [J].
Berti, Massimiliano ;
Maspero, Alberto ;
Ventura, Paolo .
INVENTIONES MATHEMATICAE, 2022, 230 (02) :651-711
[6]   A proof of the Benjamin-Feir instability [J].
Bridges, TJ ;
Mielke, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 133 (02) :145-198
[7]   NUMERICAL-SIMULATION OF GRAVITY-WAVES [J].
CRAIG, W ;
SULEM, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (01) :73-83
[8]   A high-order asymptotic analysis of the Benjamin-Feir instability spectrum in arbitrary depth [J].
Creedon, Ryan P. P. ;
Deconinck, Bernard .
JOURNAL OF FLUID MECHANICS, 2023, 956
[9]   Computing spectra of linear operators using the Floquet-Fourier-Hill method [J].
Deconinck, Bernard ;
Kutz, J. Nathan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 219 (01) :296-321
[10]   The instability of periodic surface gravity waves [J].
Deconinck, Bernard ;
Oliveras, Katie .
JOURNAL OF FLUID MECHANICS, 2011, 675 :141-167