Universality Classes of Percolation Processes: Renormalization Group Approach

被引:1
作者
Hnatic, Michal [1 ,2 ,3 ]
Honkonen, Juha [4 ]
Lucivjansky, Tomas [1 ]
Mizisin, Lukas [2 ]
机构
[1] Safarik Univ, Fac Sci, Moyzesova 16, Kosice 04001, Slovakia
[2] Joint Inst Nucl Res, Bogolyubov Lab Theoret Phys, Dubna 141980, Russia
[3] Slovak Acad Sci, Inst Expt Phys, Watsonova 47, Kosice 04001, Slovakia
[4] Univ Helsinki, Dept Phys, FI-00014 Helsinki, Finland
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
percolation process; field-theoretic renormalization group; multi-loop calculations; DIRECTED PERCOLATION; ANOMALOUS DIMENSIONS; CRITICAL-BEHAVIOR; EPIDEMIC PROCESS; BETA-FUNCTION; FIELD-THEORY; REPRESENTATION; DYNAMICS; TRANSITION;
D O I
10.3390/sym15091696
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Complex systems of classical physics in certain situations are characterized by intensive fluctuations of the quantities governing their dynamics. These include important phenomena such as (continuous) second-order phase transitions, fully developed turbulence, magnetic hydrodynamics, advective-diffusive processes, the kinetics of chemical reactions, percolation, and processes in financial markets. The theoretical goal of the study of such systems is to determine and predict the temporal and spatial dependence of statistical correlations of fluctuating variables. Modern methods of quantum field theory, originally developed in high-energy physics to describe the properties of elementary particles, allow for quantitative analysis of such correlations. Peculiarities of quantum field theory in solving two paradigmatic statistical problems related to percolation are reviewed, and new results on calculating representative universal parameters such as critical exponents that describe asymptotic behavior are presented.
引用
收藏
页数:40
相关论文
共 50 条
[21]   Universality classes of spatiotemporal intermittency [J].
Jabeen, Zahera ;
Gupte, Neelima .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (01) :59-63
[22]   Transition fronts and their universality classes [J].
Gorbushin, N. ;
Vainchtein, A. ;
Truskinovsky, L. .
PHYSICAL REVIEW E, 2022, 106 (02)
[23]   Functional renormalization group approach to correlated fermion systems [J].
Metzner, Walter ;
Salmhofer, Manfred ;
Honerkamp, Carsten ;
Meden, Volker ;
Schoenhammer, Kurt .
REVIEWS OF MODERN PHYSICS, 2012, 84 (01) :299-352
[24]   A perturbative renormalization group approach to driven quantum systems [J].
De Sarkar, Sangita ;
Sensarma, Rajdeep ;
Sengupta, K. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (32)
[25]   Nonperturbative renormalization group approach to Lifshitz critical behaviour [J].
Essafi, K. ;
Kownacki, J. -P. ;
Mouhanna, D. .
EPL, 2012, 98 (05)
[26]   Exploring the θ-vacuum structure in the functional renormalization group approach [J].
Fukushima, Kenji ;
Shimazaki, Takuya ;
Tanizaki, Yuya .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (04)
[27]   Tensor renormalization group for fermions [J].
Akiyama, Shinichiro ;
Meurice, Yannick ;
Sakai, Ryo .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (34)
[28]   Keldysh approach to the renormalization group analysis of the disordered electron liquid [J].
Schwiete, G. ;
Finkel'stein, A. M. .
PHYSICAL REVIEW B, 2014, 89 (07)
[29]   Nonperturbative renormalization group approach to the Bose-Hubbard model [J].
Rancon, A. ;
Dupuis, N. .
PHYSICAL REVIEW B, 2011, 83 (17)
[30]   Functional Renormalization Group Approach to the Sine-Gordon Model [J].
Nagy, S. ;
Nandori, I. ;
Polonyi, J. ;
Sailer, K. .
PHYSICAL REVIEW LETTERS, 2009, 102 (24)