Soliton dynamics for generalized Chafee-Infante equation with power-law nonlinearity

被引:3
|
作者
Tang, Xiaogang [1 ]
Wang, Ying [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212100, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2023年 / 77卷 / 10期
关键词
SCHRODINGER-EQUATION; KINK-SOLITON; BRIGHT; SYSTEM;
D O I
10.1140/epjd/s10053-023-00756-9
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
For systems modeled by the generalized Chafee-Infante equation with arbitrary nonlinear power index in (1+1)-dimensional and (2+ 1)-dimensional scenarios, we investigate the soliton dynamics utilizing the modified F-expansion method and novel ansatz of F-base function. We derived the bright soliton solution and kink soliton solution supported by the generalized Chafee-Infante equation system in both (1 + 1)- and (2 + 1)-dimensional cases. We gave graphical illustrations of the derived soliton solutions in one and two dimensions and analyzed the stability of the bright soliton and kink soliton solutions in twodimensional format. The theoretical results presented in this work can be used to guide the experimental observation of solitons in systems modeled by the generalized Chafee-Infante equation.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Soliton dynamics for generalized Chafee–Infante equation with power-law nonlinearity
    Xiaogang Tang
    Ying Wang
    The European Physical Journal D, 2023, 77
  • [2] The Fine Dynamics of the Chafee-Infante Equation
    Debussche, Arnaud
    Hoegele, Michael
    Imkeller, Peter
    DYNAMICS OF NONLINEAR REACTION-DIFFUSION EQUATIONS WITH SMALL LEVY NOISE, 2013, 2085 : 11 - 43
  • [3] The Stochastic Chafee-Infante Equation
    Debussche, Arnaud
    Hoegele, Michael
    Imkeller, Peter
    DYNAMICS OF NONLINEAR REACTION-DIFFUSION EQUATIONS WITH SMALL LEVY NOISE, 2013, 2085 : 45 - 68
  • [4] Lipschitz perturbations of the Chafee-Infante equation
    Pires, Leonardo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 519 (01)
  • [5] ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE CHAFEE-INFANTE EQUATION
    黄浩川
    黄锐
    ActaMathematicaScientia, 2020, 40 (02) : 425 - 441
  • [6] Asymptotic Behavior of Solutions for the Chafee-Infante Equation
    Huang, Haochuan
    Huang, Rui
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (02) : 425 - 441
  • [7] Asymptotic Behavior of Solutions for the Chafee-Infante Equation
    Haochuan Huang
    Rui Huang
    Acta Mathematica Scientia, 2020, 40 : 425 - 441
  • [8] Sign changing periodic solutions for the Chafee-Infante equation
    Huang, Haochuan
    Huang, Rui
    APPLICABLE ANALYSIS, 2018, 97 (13) : 2313 - 2331
  • [9] On the pitchfork bifurcation for the Chafee-Infante equation with additive noise
    Blumenthal, Alex
    Engel, Maximilian
    Neamtu, Alexandra
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 187 (3-4) : 603 - 627
  • [10] The effect of noise on the Chafee-Infante equation: A nonlinear case study
    Caraballo, Tomas
    Crauel, Hans
    Langa, Jose A.
    Robinson, James C.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) : 373 - 382