Elucidating the Active Sites and Synergies in Water Splitting on Manganese Oxide Nanosheets on Graphite Support

被引:5
作者
Schmidt, Thorsten O. [1 ]
Wark, Andre [2 ]
Haid, Richard W. [1 ]
Kluge, Regina M. [1 ]
Suzuki, Shinya [3 ,7 ]
Kamiya, Kazuhide [4 ]
Bandarenka, Aliaksandr S. [1 ,5 ]
Maruyama, Jun [6 ]
Skulason, Egill [2 ]
机构
[1] Tech Univ Munich, Phys Dept ECS, James Franck Str 1, D-85748 Garching, Germany
[2] Univ Iceland, Fac Ind Engn Mech Engn & Comp Sci, VR 3, IS-107 Reykjavik, Iceland
[3] Univ Tokyo, Grad Sch Engn, Dept Appl Chem, Bunkyo ku, Tokyo 1138656, Japan
[4] Osaka Univ, Res Ctr Solar Energy Chem, Grad Sch Engn Sci, 1-3 Machikaneyama, Toyonaka, Osaka 5608531, Japan
[5] Catalysis Res Ctr TUM, Ernst Otto Fischer Str 1, D-85748 Garching, Germany
[6] Osaka Res Inst Ind Sci & Technol, Res Div Environm Technol, Joto Ku, 1-6-50 Morinomiya, Joto ku, Osaka 5368553, Japan
[7] Samsung Japan Corp, Samsung Device Solut R&D Japan, 2-1-11 Senbanishi, Osaka 5620036, Japan
基金
欧盟地平线“2020”; 日本学术振兴会; 日本科学技术振兴机构;
关键词
highly-oriented pyrolytic graphite; manganese oxide; n-EC-STM; noble metal-free electrocatalysts; oxygen evolution reaction; photosystem II; PHOTOSYSTEM-II; ELECTROCHEMICAL WATER; CRYSTAL-STRUCTURE; OXYGEN REDUCTION; MNO2; NANOSHEETS; LAYERED MNO2; OXIDATION; NANOSTRUCTURES; MECHANISM; CATALYSTS;
D O I
10.1002/aenm.202302039
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photosystem II is nature's solution for driving the oxygen evolution reaction to oxidize water. A manganese-oxide cluster is this protein's active center for water splitting, while the most efficient man-made catalysts are costly noble metal-based oxides. Facing the climate change, research on affordable and abundant electrocatalysts is crucial. To mimic the biological solution, manganese oxide nanosheets are synthesized and deposited on highly-oriented pyrolytic graphite. This electrocatalyst is then examined with spectroscopic and electrochemical measurements, electrochemical noise scanning tunneling microscopy, and density functional theory calculations. The detailed investigation assigns the origin of its enhanced water-splitting performance to detected activity at the nanosheet edges which the proposed mechanism explains further. Therefore, the results provide a blueprint for how to design efficient electrocatalysts for water oxidation with abundant materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Exfoliated manganese oxide nanosheets as highly active catalysts for glycolysis of polyethylene terephthalate
    Son, Seon Gyu
    Jin, Se Bin
    Kim, Seo Jin
    Park, Hong Jun
    Shin, Junho
    Ryu, Taegong
    Jeong, Jae-Min
    Choi, Bong Gill
    FLATCHEM, 2022, 36
  • [22] Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
    Friebel, Daniel
    Louie, Mary W.
    Bajdich, Michal
    Sanwald, Kai E.
    Cai, Yun
    Wise, Anna M.
    Cheng, Mu-Jeng
    Sokaras, Dimosthenis
    Weng, Tsu-Chien
    Alonso-Mori, Roberto
    Davis, Ryan C.
    Bargar, John R.
    Norskov, Jens K.
    Nilsson, Anders
    Bell, Alexis T.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (03) : 1305 - 1313
  • [23] Significant role of Mn(III) sites in egl configuration in manganese oxide catalysts for efficient artificial water oxidation
    Indra, Arindam
    Menezes, Prashanth W.
    Schuster, Felix
    Driess, Matthias
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2015, 152 : 156 - 161
  • [24] Exfoliated graphite with spinel oxide as an effective hybrid electrocatalyst for water splitting
    Skorupska, Malgorzata
    Kowalska, Kinga
    Tyc, Magdalena
    Ilnicka, Anna
    Szkoda, Mariusz
    Lukaszewicz, Jerzy P.
    RSC ADVANCES, 2023, 13 (15) : 10215 - 10220
  • [25] Multi-Active Sites Loaded NiCu-MOF@MWCNTs as a Bifunctional Electrocatalyst for Electrochemical Water Splitting Reaction
    Suresh, Pavithra
    Natarajan, Abirami
    Rajaram, Arulmozhi
    LANGMUIR, 2024, 40 (18) : 9509 - 9519
  • [26] Highly active water oxidation on nanostructured biomimetic calcium manganese oxide catalysts
    Rong, Feng
    Zhao, Jiao
    Chen, Zheng
    Xu, Yuxing
    Zhao, Yaopeng
    Yang, Qihua
    Li, Can
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (17) : 6585 - 6594
  • [27] Highly reversible water splitting cell building from hierarchical 3D nickel manganese oxyphosphide nanosheets
    Balamurugan, Jayaraman
    Thanh Tuan Nguyen
    Aravindan, Vanchiappan
    Kim, Nam Hoon
    Lee, Joong Hee
    NANO ENERGY, 2020, 69
  • [28] The electronic structure of iridium oxide electrodes active in water splitting
    Pfeifer, V.
    Jones, T. E.
    Velez, J. J. Velasco
    Massue, C.
    Greiner, M. T.
    Arrigo, R.
    Teschner, D.
    Girgsdies, F.
    Scherzer, M.
    Allan, J.
    Hashagen, M.
    Weinberg, G.
    Piccinin, S.
    Haevecker, M.
    Knop-Gericke, A.
    Schloegl, R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (04) : 2292 - 2296
  • [29] Electronic and Lattice Engineering of Ruthenium Oxide towards Highly Active and Stable Water Splitting
    Hou, Liqiang
    Li, Zijian
    Jang, Haeseong
    Wang, Yu
    Cui, Xuemei
    Gu, Xiumin
    Kim, Min Gyu
    Feng, Ligang
    Liu, Shangguo
    Liu, Xien
    ADVANCED ENERGY MATERIALS, 2023, 13 (22)
  • [30] Elucidating the Domain Structure of the Cobalt Oxide Water Splitting Catalyst by X-ray Pair Distribution Function Analysis
    Du, Pingwu
    Kokhan, Oleksandr
    Chapman, Karena W.
    Chupas, Peter J.
    Tiede, David M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (27) : 11096 - 11099