Quantum Emitter Formation Dynamics and Probing of Radiation-Induced Atomic Disorder in Silicon

被引:9
作者
Liu, Wei [1 ]
Ivanov, Vsevolod [1 ,2 ]
Jhuria, Kaushalya [1 ]
Ji, Qing [1 ]
Persaud, Arun [1 ]
Redjem, Walid [3 ]
Simoni, Jacopo [2 ]
Zhiyenbayev, Yertay [3 ]
Kante, Boubacar [3 ]
Lopez, Javier Garcia [4 ]
Tan, Liang Z. [2 ]
Schenkel, Thomas [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Accelerator Technol & Appl Phys Div, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Univ Seville, Ctr Nacl Aceleradores, CSIC, Seville 41092, Spain
关键词
TOTAL-ENERGY CALCULATIONS; DEFECT PRODUCTION; ION; ENTANGLEMENT; EFFICIENCY; CARBON; DAMAGE;
D O I
10.1103/PhysRevApplied.20.014058
中图分类号
O59 [应用物理学];
学科分类号
摘要
Near-infrared color centers in silicon are emerging candidates for on-chip integrated quantum emitters, optical-access quantum memories, and sensing. We access ensemble G-color-center formation dynamics and radiation-induced atomic disorder in silicon for a series of megaelectronvolt proton-flux conditions. The photoluminescence results reveal that the G centers are formed more efficiently by pulsed-proton irradiation than by continuous-wave proton irradiation. The enhanced transient excitations and dynamic annealing within nanoseconds allows optimization of the ratio of G-center formation to nonradiative defect accumulation. The G centers preserve narrow line widths of about 0.1 nm when they are generated by moderate pulsed-proton fluences, while the line width broadens significantly as the pulsed-proton fluence increases. This implies vacancy or interstitial clustering by overlapping collision cascades. The tracking of G-center properties for a series of irradiation conditions enables sensitive probing of atomic disorder, serving as a complementary analytical method for sensing damage accumulation. Aided by ab initio electronic structure calculations, we provide insight into the atomic disorder induced inhomogeneous broadening by introducing vacancies, silicon interstitials, and oriented strain fields in the vicinity of a G center. A vacancy leads to a tensile strain and can result in either a red shift or a blue shift of the G-center emission, depending on its position relative to the G center. Meanwhile, Si interstitials lead to compressive strain, which results in a monotonic red shift. High-flux and tunable ion pulses enable the exploration of the fundamental dynamics of radiation-induced defects as well as methods for the optimization of G-center formation and qubit synthesis for quantum information processing.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Silicon solar cells: toward the efficiency limits [J].
Andreani, Lucio Claudio ;
Bozzola, Angelo ;
Kowalczewski, Piotr ;
Liscidini, Marco ;
Redorici, Lisa .
ADVANCES IN PHYSICS-X, 2019, 4 (01)
[2]  
aps http://link.aps.org/supplemental/10.1103/PhysRevApplied.20.014058, US
[3]   Spinney: Post-processing of first-principles calculations of point defects in semiconductors with Python']Python [J].
Arrigoni, Marco ;
Madsen, Georg K. H. .
COMPUTER PHYSICS COMMUNICATIONS, 2021, 264
[4]   Optical properties of an ensemble of G-centers in silicon [J].
Beaufils, C. ;
Redjem, W. ;
Rousseau, E. ;
Jacques, V. ;
Kuznetsov, A. Yu. ;
Raynaud, C. ;
Voisin, C. ;
Benali, A. ;
Herzig, T. ;
Pezzagna, S. ;
Meijer, J. ;
Abbarchi, M. ;
Cassabois, G. .
PHYSICAL REVIEW B, 2018, 97 (03)
[5]   Co-Implantation of Carbon and Protons: An Integrated Silicon Device Technology Compatible Method to Generate the Lasing G-Center [J].
Berhanuddin, Dilla D. ;
Lourenco, Manon A. ;
Gwilliam, Russell M. ;
Homewood, Kevin P. .
ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (13) :2709-2712
[6]   Charge collection efficiency of irradiated silicon detector operated at cryogenic temperatures [J].
Borer, K ;
Janos, S ;
Palmieri, VG ;
Dezillie, B ;
Li, Z ;
Collins, P ;
Niinikoski, TO ;
Lourenço, C ;
Sonderegger, P ;
Borchi, E ;
Bruzzi, M ;
Pirollo, S ;
Granata, V ;
Pagano, S ;
Chapuy, S ;
Dimcovski, Z ;
Grigoriev, E ;
Bell, W ;
Devine, SRH ;
O'Shea, V ;
Smith, K ;
Berglund, P ;
de Boer, W ;
Hauler, F ;
Heising, S ;
Jungermann, L ;
Casagrande, L ;
Cindro, V ;
Mikuz, M ;
Zavartanik, M ;
da Viá, C ;
Esposito, A ;
Konorov, I ;
Paul, S ;
Schmitt, L ;
Buontempo, S ;
D'Ambrosio, N ;
Pagano, S ;
Ruggiero, G ;
Eremin, V ;
Verbitskaya, E .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 440 (01) :5-16
[7]   Highly enriched 28Si reveals remarkable optical linewidths and fine structure for well-known damage centers [J].
Chartrand, C. ;
Bergeron, L. ;
Morse, K. J. ;
Riemann, H. ;
Abrosimov, N., V ;
Becker, P. ;
Pohl, H-J ;
Simmons, S. ;
Thewalt, M. L. W. .
PHYSICAL REVIEW B, 2018, 98 (19)
[8]   THE OPTICAL-PROPERTIES OF LUMINESCENCE-CENTERS IN SILICON [J].
DAVIES, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 176 (3-4) :83-188
[9]   First-principles study of the T center in silicon [J].
Dhaliah, Diana ;
Xiong, Yihuang ;
Sipahigil, Alp ;
Griffin, Sinead M. ;
Hautier, Geoffroy .
PHYSICAL REVIEW MATERIALS, 2022, 6 (05)
[10]   Directional detection of dark matter using solid-state quantum sensing [J].
Ebadi, Reza ;
Marshall, Mason C. ;
Phillips, David F. ;
Cremer, Johannes ;
Zhou, Tao ;
Titze, Michael ;
Kehayias, Pauli ;
Saleh Ziabari, Maziar ;
Delegan, Nazar ;
Rajendran, Surjeet ;
Sushkov, Alexander O. ;
Heremans, F. Joseph ;
Bielejec, Edward S. ;
Holt, Martin V. ;
Walsworth, Ronald L. .
AVS QUANTUM SCIENCE, 2022, 4 (04)