Comprehensive analysis of thermal runaway and rupture of lithium-ion batteries under mechanical abuse conditions

被引:19
|
作者
Chen, Haodong [1 ]
Kalamaras, Evangelos [1 ,2 ]
Abaza, Ahmed [3 ]
Tripathy, Yashraj [1 ,2 ]
Page, Jason [3 ]
Barai, Anup [1 ]
机构
[1] Univ Warwick, WMG, Coventry CV4 7AL, England
[2] Faraday Inst, Harwell Campus, Didcot OX11 0RA, England
[3] Jaguar Land Rover Ltd, Coventry CV3 4LF, England
基金
“创新英国”项目;
关键词
Battery safety; Thermal runaway; Nail penetration; Sidewall rupture; Computed tomography; NAIL-PENETRATION; ENERGY DENSITY; MODEL; CHARGE; STATE; TESTS; CELLS; FIRE;
D O I
10.1016/j.apenergy.2023.121610
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sidewall rupture of lithium-ion batteries plays an important role in thermal runaway (TR) propagation because flame burst from the side of cell can directly heat adjacent cells. However, the understanding of sidewall rupture in high specific energy cells under mechanical abuse conditions remains limited. In this work, nail penetration is adopted as a trigger method of TR of 21700-format cylindrical cells with high specific energy (257.0 W & BULL;h/kg). The effects of test parameters including nail diameter, nail speed, penetrating location, penetrating depth, and state of charge on likelihood and severity of thermal runaway and sidewall rupture behaviour were investigated. A series of equipment including high-definition cameras, thermal imaging camera, X-ray computed tomography (CT), cycler and electronic balance were adopted to reveal the behaviour and the mechanism of TR and sidewall rupture. Discussion on CT scan and fire behaviour provides new perspectives for understanding sidewall rupture and TR mechanisms in high specific energy cells. The results show that the mean mass loss ratio of the cell with 100% SoC is greater than 45% under each test condition, and the maximum of them is as high as 62.5% when penetrating off-centre from the cell bottom and with a penetrating depth of 10 mm. The likelihood of sidewall rupture increases with the increasing nail speed, nail diameter, penetrating depth and state of charge when penetrating from the top cover of the cell, but it is little affected by the penetrating depth and nail diameter for penetrating from the bottom of the cell. For the first time such a relationship is presented. The root-cause analysis for the sidewall rupture of the cell has been discussed, which highlights the three key factors, including the casing strength, the internal pressure, and the opening area of the venting disk.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Experimental Investigation on Thermal Runaway of Lithium-Ion Batteries under Low Pressure and Low Temperature
    Meng, Di
    Weng, Jingwen
    Wang, Jian
    BATTERIES-BASEL, 2024, 10 (07):
  • [22] Effect of Thermal Abuse Conditions on Thermal Runaway of NCA 18650 Cylindrical Lithium-Ion Battery
    Jeon, Minkyu
    Lee, Eunsong
    Park, Hyunwook
    Yoon, Hongsik
    Keel, Sangin
    BATTERIES-BASEL, 2022, 8 (10):
  • [23] Experimental study on the characteristics of thermal runaway propagation process of cylindrical lithium-ion batteries
    Ke, Wei
    Zhang, Yanlin
    Zhou, Bo
    Wu, Chengyi
    Liu, Yan
    Xu, Min
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2024, 46 (01) : 11379 - 11394
  • [24] Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database
    Feng, Xuning
    Zheng, Siqi
    Ren, Dongsheng
    He, Xiangming
    Wang, Li
    Cui, Hao
    Liu, Xiang
    Jin, Changyong
    Zhang, Fangshu
    Xu, Chengshan
    Hsu, Hungjen
    Gao, Shang
    Chen, Tianyu
    Li, Yalun
    Wang, Tianze
    Wang, Hao
    Li, Maogang
    Ouyang, Minggao
    APPLIED ENERGY, 2019, 246 : 53 - 64
  • [25] Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions
    Chen, Wei
    Jiang, Juncheng
    Wen, Jinfeng
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 146 (02) : 855 - 863
  • [26] Numerical Study on Lithium-Ion Battery Thermal Runaway Under Fire Conditions
    Cheng, Chonglv
    Kong, Fanfu
    Shan, Conghui
    Xu, Baopeng
    FIRE TECHNOLOGY, 2023, 59 (03) : 1073 - 1087
  • [27] Thermal runaway induced by dynamic overcharge of lithium-ion batteries under different environmental conditions
    Wei Chen
    Juncheng Jiang
    Jinfeng Wen
    Journal of Thermal Analysis and Calorimetry, 2021, 146 : 855 - 863
  • [28] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [29] Thermal Runaway of Lithium-Ion Batteries Triggered by Electromagnetic Interference
    Dubois, Eric Ravindranath
    Kherbouchi, Hocine
    Bosson, Joel
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2020, 62 (05) : 2096 - 2100
  • [30] Monitoring and diagnostic approaches for thermal runaway in lithium-ion batteries
    Xu, Zengheng
    Zhou, Xiaoyan
    Fu, Jialong
    Li, Qiutong
    Tan, Zejie
    Fan, Xiaopeng
    Wang, Zhiming
    Tian, Bing
    Guo, Xin
    CHINESE SCIENCE BULLETIN-CHINESE, 2023, 68 (33): : 4501 - 4516