In-situ-grown multidimensional Cu-doped Co1-xS2@MoS2 on N-doped carbon nanofibers as anode materials for high-performance alkali metal ion batteries

被引:11
|
作者
Guan, Baole [1 ]
Yang, Shao-Jie [2 ]
Tian, Shu-Hui [2 ]
Sun, Ting [1 ]
Wang, Peng-Fei [2 ]
Yi, Ting-Feng [1 ,2 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Chem, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Multidimensional structure; Cu doping; Heterostructure; Alkali metal ion batteries; Electrospinning; MOS2; NANOSHEETS;
D O I
10.1016/j.jcis.2023.07.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal sulfides with the high theoretical capacity and low cost have been considered as advanced anode candidate for alkali metal ion batteries, but suffered from unsatisfactory electrical conductivity and huge volume expansion. Herein, a multidimensional structure Cu-doped Co1-xS2@MoS2 in-situ-grown on N-doped carbon nanofibers (denoted as Cu-Co1-xS2@MoS2 NCNFs) have been elaborately constructed for the first time. The bimetallic zeolitic imidazolate framework CuCo-ZIFs were encapsulated in the one-dimensional (1D) NCNFs through an electrospinning route and then on which the two-dimensional (2D) MoS2 nanosheets were in-situ grown via a hydrothermal process. The architecture of 1D NCNFs can effectively shorten ion diffusion path and enhance electrical conductivity. Besides, the formed heterointerface between MOF-derived binary metal sulfides and MoS2 can provide extra active centers and accelerate reaction kinetics, which guarantee a superior reversibility. As expected, the resulting Cu-Co1-xS2@MoS2 NCNFs electrode delivers excellent specific capacity of Na-ion batteries (845.6 mAh/g at 0.1 A/g), Li-ion batteries (1145.7 mAh/g at 0.1 A/g), and K-ion batteries (474.3 mAh/g at 0.1 A/g). Therefore, this innovative design strategy will bring a meaningful prospect for developing high-performance multi-component metal sulfides electrode for alkali metal ion batteries.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [1] ZnS/SnS2 Heterostructures Encapsulated in N-Doped Carbon Nanofibers for High-Performance Alkali Metal-Ion Batteries
    Yang, Xiao
    Miao, Zhengrui
    Zhong, Qi
    Zhang, Xiangxiang
    Zhang, Ze
    Yang, Zhenyu
    Yu, Ji
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (40) : 46881 - 46894
  • [2] SiO2/Co encapsulated in N-doped carbon nanofibers as anode materials for lithium-ion batteries
    Zhong, Qi
    Yang, Xiao
    Miao, Zhengrui
    Liu, Liequan
    Xu, Yuqing
    Meng, YiXuan
    Yang, Zhenyu
    Yu, Ji
    MATERIALS TODAY CHEMISTRY, 2024, 35
  • [3] MoS2 microsphere@ N-doped carbon composites as high performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Yue, Song
    Wang, Jie
    Zhao, Yun
    Li, Qun
    Yin, Mengmeng
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Shi, Daxin
    Jiao, Qingze
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 840 : 230 - 236
  • [4] N-doped graphene encapsulated MoS2 nanosphere composite as a high-performance anode for lithium-ion batteries
    Zhang, Yating
    Zhang, Zhanrui
    Zhu, Youyu
    Zhang, Yongling
    Yang, Mengnan
    Li, Siyi
    Suo, Ke
    Li, Keke
    NANOTECHNOLOGY, 2022, 33 (23)
  • [5] Dopamine-derived N-doped carbon-encapsulated MoS2 microspheres as a high-performance anode for sodium-ion batteries
    Qiu, Hua
    Zheng, Hongyu
    Jin, Yuhong
    Jia, Miao
    Yuan, Qiong
    Zhao, Chenchen
    Jia, Mengqiu
    IONICS, 2020, 26 (11) : 5543 - 5551
  • [6] Co-MOF derived MoSe2@CoSe2/N-doped carbon nanorods as high-performance anode materials for potassium ion batteries
    Oh, Hong Geun
    Park, Seung-Keun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) : 10677 - 10688
  • [7] Double-Morphology CoS2 Anchored on N-Doped Multichannel Carbon Nanofibers as High-Performance Anode Materials for Na-Ion Batteries
    Pan, Yuelei
    Cheng, Xudong
    Gong, Lunlun
    Shi, Long
    Zhou, Ting
    Deng, Yurui
    Zhang, Heping
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (37) : 31441 - 31451
  • [8] In situ formation of few-layered MoS2@N-doped carbon network as high performance anode materials for sodium-ion batteries
    Li, Junfeng
    Gao, Weixiang
    Huang, Liangyu
    Jiang, Yingchang
    Chang, Xueting
    Sun, Shinbin
    Pan, Likun
    APPLIED SURFACE SCIENCE, 2022, 571
  • [9] Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries
    Liu, Yongchang
    Zhang, Ning
    Liu, Xiaobin
    Chen, Chengcheng
    Fan, Li-Zhen
    Jiao, Lifang
    ENERGY STORAGE MATERIALS, 2017, 9 : 170 - 178
  • [10] MoS2 nanosheets grown on N-doped carbon micro-tubes derived from willow catkins as a high-performance anode material for lithium-ion batteries
    Teng, Yongqiang
    Mo, Maosong
    Lv, Pengpeng
    MATERIALS LETTERS, 2017, 209 : 396 - 399