Acoustic fish species identification using deep learning and machine learning algorithms: A systematic review

被引:12
|
作者
Yassir, Anas [1 ,2 ,3 ]
Andaloussi, Said Jai [1 ]
Ouchetto, Ouail [1 ]
Mamza, Kamal [2 ]
Serghini, Mansour [2 ]
机构
[1] Fac Sci Ain Chock, LIS, Km 8 Route Jadida Maar, Casablanca 20100, Morocco
[2] Inst Natl Rech Halieut, 2 Bd Sidi Abderrahmane, Casablanca 20180, Morocco
[3] Fac Sci Ain Chock, LIS, Km 8 Route 625 Jadida Maar, Casablanca 20100, Morocco
关键词
Acoustic; Fish; Classification; Deep learning; Machine learning; NEURAL-NETWORKS; CLASSIFICATION; SEGMENTATION; SCHOOLS; HYBRID;
D O I
10.1016/j.fishres.2023.106790
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
In fishery acoustics, surveys using sensor systems such as sonars and echosounders have been widely considered to be accurate tools for acquiring fish species data, fish species biomass, and abundance estimations. During acoustic surveys, research vessels are equipped with echosounders that produce sound waves and then record all echoes coming from objects and targets in the water column. The preprocessing and scrutinizing of acoustic fish species data have always been manually conducted and have been considered time-consuming. Meanwhile, deep learning and machine learning-based approaches have also been adopted to automate or partially automate the acoustic echo scrutinizing process and build an objective process with which the species echo classification uncertainty is expected to be lower than the uncertainty of scrutinizing experts. A review of the state-of-the-art of different deep learning and machine learning applications in acoustic fish species echo classification has been highly requested. Therefore, the present paper is conceived to identify and scan the studies conducted on acoustic fish echo identification using deep learning and machine learning approaches. This document can be extended to include other marine organisms rather than just fish species. To search for related papers, we used a systematic approach to search the most known electronic databases over the last five years. We were able to identify 13 related works, which have been processed to give a summary of multiple deep and machine learning approaches used in acoustic fish species identification, and then compare their architectures, performances, and the challenges encountered in their applications.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A systematic review of machine learning and deep learning approaches in plant species detection
    Barhate, Deepti
    Pathak, Sunil
    Singh, Bhupesh Kumar
    Jain, Amit
    Dubey, Ashutosh Kumar
    SMART AGRICULTURAL TECHNOLOGY, 2024, 9
  • [2] Brain tumour detection using machine and deep learning: a systematic review
    Novsheena Rasool
    Javaid Iqbal Bhat
    Multimedia Tools and Applications, 2025, 84 (13) : 11551 - 11604
  • [3] Cephalopod species identification using integrated analysis of machine learning and deep learning approaches
    Tan, Hui Yuan
    Goh, Zhi Yun
    Loh, Kar-Hoe
    Then, Amy Yee-Hui
    Omar, Hasmahzaiti
    Chang, Siow-Wee
    PEERJ, 2021, 9
  • [4] Machine Learning and Deep Learning in Spinal Injury: A Narrative Review of Algorithms in Diagnosis and Prognosis
    Maki, Satoshi
    Furuya, Takeo
    Inoue, Masahiro
    Shiga, Yasuhiro
    Inage, Kazuhide
    Eguchi, Yawara
    Orita, Sumihisa
    Ohtori, Seiji
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (03)
  • [5] Crop mapping using supervised machine learning and deep learning: a systematic literature review
    Alami Machichi, Mouad
    Mansouri, Loubna El
    Imani, Yasmina
    Bourja, Omar
    Lahlou, Ouiam
    Zennayi, Yahya
    Bourzeix, Francois
    Hanade Houmma, Ismaguil
    Hadria, Rachid
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (08) : 2717 - 2753
  • [6] Trends in Machine and Deep Learning Techniques for Plant Disease Identification: A Systematic Review
    Rodriguez-Lira, Diana-Carmen
    Cordova-Esparza, Diana-Margarita
    alvarez-Alvarado, Jose M.
    Terven, Juan
    Romero-Gonzalez, Julio-Alejandro
    Rodriguez-Resendiz, Juvenal
    AGRICULTURE-BASEL, 2024, 14 (12):
  • [7] AI in Endoscopic Gastrointestinal Diagnosis: A Systematic Review of Deep Learning and Machine Learning Techniques
    Lewis, Jovita Relasha
    Pathan, Sameena
    Kumar, Preetham
    Dias, Cifha Crecil
    IEEE ACCESS, 2024, 12 : 163764 - 163786
  • [8] Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review
    Painuli, Deepak
    Bhardwaj, Suyash
    Kose, Utku
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 146
  • [9] A Comparative Review of Sentimental Analysis Using Machine Learning and Deep Learning Approaches
    Nagelli, Archana
    Saleena, B.
    JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2023, 22 (03)
  • [10] Medical Imaging using Machine Learning and Deep Learning Algorithms: A Review
    Latif, Jahanzaib
    Xiao, Chuangbai
    Imran, Azhar
    Tu, Shanshan
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTING, MATHEMATICS AND ENGINEERING TECHNOLOGIES (ICOMET), 2019,