Normal diet ameliorates obesity more safely and effectively than ketogenic diet does in high-fat diet-induced obesity mouse based on gut microbiota and lipid metabolism

被引:5
|
作者
Dong, Yunlong [1 ]
Song, Hongjie [1 ]
Holmes, Andrew J. [2 ,3 ]
Yan, Jiabao [1 ]
Ren, Cuiru [1 ]
Zhang, Ying [1 ]
Zhao, Wei [1 ]
Yuan, Jianhui [1 ]
Cheng, Yuyang [1 ]
Raubenheimer, David [2 ,3 ]
Cui, Zhenwei [1 ]
机构
[1] Zhengzhou Univ, Ctr Sport Nutr & Hlth, Ctr Nutr Ecol, Sch Phys Educ, Main Campus, Zhengzhou, Peoples R China
[2] Univ Sydney, Charles Perkins Ctr, Sydney, NSW, Australia
[3] Univ Sydney, Sch Life & Environm Sci, Sydney, NSW, Australia
基金
中国博士后科学基金;
关键词
Obesity; ketogenic diet; gut microbiota; lipid metabolism; normal diet; LONG-TERM; AKKERMANSIA-MUCINIPHILA; LOW-CARBOHYDRATE; ADIPOSE-TISSUE; WEIGHT-LOSS; BRAIN AXIS; HOMEOSTASIS; LIVER; INFLAMMATION; CHILDREN;
D O I
10.1080/09637486.2023.2235899
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Growing evidence supports the efficacy of ketogenic diets for inducing weight loss, but there are also potential health risks due to their unbalanced nutrient composition. We aim at assessing relative effectiveness of a balanced diet and ketogenic diet for reversing metabolic syndrome in a diet-induced C57BL/6J mouse model. Mice were fed high-fat diet to induce obesity. Obese individuals were then fed either ketogenic or balanced diets as an obesity intervention. Serum, liver, fat and faecal samples were analysed. We observed that both diet interventions led to significant decrease in body weight. The ketogenic intervention was less effective in reducing adipocyte cell size and led to dyslipidaemia. The composition of the gut microbiome in the balanced diet intervention was more similar to the non-obese control group and had improved functional attributes. Our results indicate intervention with balanced diets ameliorates obesity more safely and effectively than ketogenic diets in diet-induced obesity mouse model.
引用
收藏
页码:589 / 605
页数:17
相关论文
共 50 条
  • [21] Peanut-natto improved obesity of high-fat diet mice by regulating gut microbiota and lipid metabolism
    Cao, Shufang
    Yang, Lina
    Xie, Mengxi
    Yu, Miao
    Shi, Taiyuan
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [22] Pleurotus Ostreatus Ameliorates Obesity by Modulating the Gut Microbiota in Obese Mice Induced by High-Fat Diet
    Hu, Yanzhou
    Xu, Jia
    Sheng, Yao
    Liu, Junyu
    Li, Haoyu
    Guo, Mingzhang
    Xu, Wentao
    Luo, Yunbo
    Huang, Kunlun
    He, Xiaoyun
    NUTRIENTS, 2022, 14 (09)
  • [23] Allicin Improves Metabolism in High-Fat Diet-Induced Obese Mice by Modulating the Gut Microbiota
    Shi, Xin'e
    Zhou, Xiaomin
    Chu, Xinyi
    Wang, Jie
    Xie, Baocai
    Ge, Jing
    Guo, Yuan
    Li, Xiao
    Yang, Gongshe
    NUTRIENTS, 2019, 11 (12)
  • [24] Fucoidan Protects Against High-Fat Diet-Induced Obesity and Modulates Gut Microbiota in Institute of Cancer Research Mice
    Huang, Jinli
    Huang, Juan
    Li, Yao
    Lv, Huiyun
    Yin, Tianyi
    Fan, Shujun
    Zhang, Caihua
    Li, Huajun
    JOURNAL OF MEDICINAL FOOD, 2021, 24 (10) : 1058 - 1067
  • [25] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107
  • [26] Codium fragileAmeliorates High-Fat Diet-Induced Metabolism by Modulating the Gut Microbiota in Mice
    Kim, Jungman
    Choi, Jae Ho
    Oh, Taehwan
    Ahn, Byungjae
    Unno, Tatsuya
    NUTRIENTS, 2020, 12 (06) : 1 - 15
  • [27] Synergistic Beneficial Effects of Resveratrol and Diet on High-Fat Diet-Induced Obesity
    Alrob, Osama Abo
    Al-Horani, Ramzi A.
    Altaany, Zaid
    Nusair, Mohammad B.
    MEDICINA-LITHUANIA, 2022, 58 (09):
  • [28] Poly-γ-D-glutamic acid ameliorates obesity by modulating gut microbiota dysbiosis in high-fat diet-induced obesity mice
    Oh, Dong Nyoung
    Park, So Young
    Jang, Won Je
    Lee, Jong Min
    JOURNAL OF FUNCTIONAL FOODS, 2025, 127
  • [29] High-Fat Diet-Induced Decreased Circulating Bile Acids Contribute to Obesity Associated with Gut Microbiota in Mice
    Cai, Haiying
    Zhang, Junhui
    Liu, Chang
    Le, Thanh Ninh
    Lu, Yuyun
    Feng, Fengqin
    Zhao, Minjie
    FOODS, 2024, 13 (05)
  • [30] Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites
    Mo, Xiaoxing
    Sun, Yunhong
    Liang, Xiaoling
    Li, Linyan
    Hu, Shan
    Xu, Zihui
    Liu, Shuang
    Zhang, Yan
    Li, Xiaoqin
    Liu, Liegang
    CARBOHYDRATE POLYMERS, 2022, 281