A Unified Approach to Variable Selection for Partially Linear Models

被引:1
|
作者
Lu, Youhan [1 ]
Dong, Yushen [1 ]
Hu, Juan [2 ]
Wu, Yichao [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL USA
[2] DePaul Univ, Dept Math Sci, Chicago, IL 60614 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
Partially linear model; Profile-kernel estimation; Variable selection;
D O I
10.1080/10618600.2023.2216254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We focus on the general partially linear model without any structure assumption on the nonparametric component. For such a model with both linear and nonlinear predictors being multivariate, we propose a new variable selection method. Our new method is a unified approach in the sense that it can select both linear and nonlinear predictors simultaneously by solving a single optimization problem. We prove that the proposed method achieves consistency. Both simulation examples and a real data example are used to demonstrate the new method's competitive finite-sample performance. for this article are available online.
引用
收藏
页码:250 / 260
页数:11
相关论文
共 50 条
  • [31] Variable selection in the partially linear errors-in-variables models for longitudinal data
    Yi-ping Yang
    Liu-gen Xue
    Wei-hu Cheng
    Acta Mathematicae Applicatae Sinica, English Series, 2012, 28 : 769 - 780
  • [32] Double penalized variable selection procedure for partially linear models with longitudinal data
    Pei Xin Zhao
    An Min Tang
    Nian Sheng Tang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1963 - 1976
  • [33] Variable selection and parameter estimation for partially linear models via Dantzig selector
    Li, Feng
    Lin, Lu
    Su, Yuxia
    METRIKA, 2013, 76 (02) : 225 - 238
  • [34] Estimation and variable selection for quantile partially linear single-index models
    Zhang, Yuankun
    Lian, Heng
    Yu, Yan
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 162 : 215 - 234
  • [35] Estimation and variable selection of quantile partially linear additive models for correlated data
    Zhao, Weihua
    Li, Rui
    Lian, Heng
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (02) : 315 - 345
  • [36] Variable selection in linear models
    Chen, Yuqi
    Du, Pang
    Wang, Yuedong
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (01) : 1 - 9
  • [37] A novel Bayesian approach for variable selection in linear regression models
    Posch, Konstantin
    Arbeiter, Maximilian
    Pilz, Juergen
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 144
  • [38] Variable selection and estimation for partially linear single-index models with longitudinal data
    Li, Gaorong
    Lai, Peng
    Lian, Heng
    STATISTICS AND COMPUTING, 2015, 25 (03) : 579 - 593
  • [39] Parametric component detection and variable selection in varying-coefficient partially linear models
    Wang, Dewei
    Kulasekera, K. B.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 117 - 129
  • [40] Variable selection for semiparametric varying coefficient partially linear errors-in-variables models
    Zhao, Peixin
    Xue, Liugen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (08) : 1872 - 1883