Bonding Performance of Glass Fiber-Reinforced Polymer Bars under the Influence of Deformation Characteristics

被引:2
作者
Xie, Fang [1 ]
Tian, Wanming [1 ]
Diez, Pedro [2 ]
Zlotnik, Sergio [2 ]
Gonzalez, Alberto Garcia [2 ]
机构
[1] Shaoxing Univ, Dept Civil Engn, Shaoxing 312000, Peoples R China
[2] Univ Politecn Catalunya Barcelona Tech, Dept Civil & Environm Engn, Barcelona 08034, Spain
关键词
GFRP bar; bond-slip behavior; deformation coefficient; engineering performance; four-fold model; MECHANICAL-PROPERTIES; AGGREGATE CONCRETE; FRP REBARS; GFRP BARS; BEHAVIOR; DURABILITY; SLIP; INTERFACE; STRENGTH;
D O I
10.3390/polym15122604
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Glass fiber-reinforced polymer (GFRP) of high performance, as a relatively ideal partial or complete substitute for steel, could increase the possibility of adapting structures to changes in harsh weather environments. While GFRP is combined with concrete in the form of bars, the mechanical characteristics of GFRP cause the bonding behavior to differ significantly from that of steel-reinforced members. In this paper, a central pull-out test was applied, according to ACI440.3R-04, to analyze the influence of the deformation characteristics of GFRP bars on bonding failure. The bond-slip curves of the GFRP bars with different deformation coefficients exhibited distinct four-stage processes. Increasing the deformation coefficient of the GFRP bars is able to significantly improve the bond strength between the GFRP bars and the concrete. However, while both the deformation coefficient and concrete strength of the GFRP bars were increased, the bond failure mode of the composite member was more likely to be changed from ductile to brittle. The results show members with larger deformation coefficients and moderate concrete grades, which generally have excellent mechanical and engineering properties. By comparing with the existing bond and slip constitutive models, it was found that the proposed curve prediction model was able to well match the engineering performance of GFRP bars with different deformation coefficients. Meanwhile, due to its high practicality, a four-fold model characterizing representative stress for the bond-slip behavior was recommended in order to predict the performance of the GFRP bars.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Bond Degradation of Glass Fiber-Reinforced Polymer Bars Embedded in Basalt Fiber-Reinforced Cementitious Composite under Harsh Conditions
    Bediwy, Ahmed G.
    El-Salakawy, Ehab F.
    ACI MATERIALS JOURNAL, 2021, 118 (05) : 149 - 159
  • [2] Performance of Glass Fiber-Reinforced Polymer Bent Bars
    Jeremic, Natasa
    Sheikh, Shamim A.
    ACI STRUCTURAL JOURNAL, 2021, 118 (02) : 273 - 285
  • [3] Performance of glass fiber reinforced polymer bars under elevated temperatures
    Alsayed, Saleh
    Al-Salloum, Yousef
    Almusallam, Tarek
    El-Gamal, Sherif
    Aqel, Mohammed
    COMPOSITES PART B-ENGINEERING, 2012, 43 (05) : 2265 - 2271
  • [4] Study on the bond performance of glass fiber-reinforced polymer bars considering the relative position between longitudinal bars and stirrups
    Man, Yiqun
    Wang, Tianyou
    Wang, Zhenyu
    Wang, Daiyu
    JOURNAL OF BUILDING ENGINEERING, 2023, 71
  • [5] Bond Durability of Basalt Fiber-Reinforced Polymer Bars Embedded in Concrete under Direct Pullout Conditions
    El Refai, Ahmed
    Abed, Farid
    Altalmas, Ahmad
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (05)
  • [6] A Detailed Investigation of the Bond Performance of Basalt Fiber-Reinforced Polymer Bars in Geopolymer Concrete
    Mohmmad, Sarwar Hasan
    Gulsan, Mehmet Eren
    Cevik, Abdulkadir
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2022, 66 (02): : 471 - 490
  • [7] Glass Fiber-Reinforced Polymer Bars under Sustained Load and Alkaline Conditions
    Harper, Callum
    Sheikh, Shamim A.
    ACI STRUCTURAL JOURNAL, 2024, 121 (04) : 3 - 18
  • [8] Bond Performance of Basalt Fiber-Reinforced Polymer Bars to Concrete
    El Refai, Ahmed
    Ammar, Mohamed-Amine
    Masmoudi, Radhouane
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2015, 19 (03)
  • [9] Fatigue Behavior of Glass Fiber-Reinforced Polymer Bars after Elevated Temperatures Exposure
    Li, Guanghui
    Zhao, Jun
    Wang, Zike
    MATERIALS, 2018, 11 (06):
  • [10] Effects of eccentric loading on performance of concrete columns reinforced with glass fiber-reinforced polymer bars
    Mahmoudabadi, Nasim Shakouri
    Bahrami, Alireza
    Saghir, Saba
    Ahmad, Afaq
    Iqbal, Muhammad
    Elchalakani, Mohamed
    Ozkilic, Yasin Onuralp
    SCIENTIFIC REPORTS, 2024, 14 (01)