Use of long short-term memory network (LSTM) in the reconstruction of missing water level data in the River Seine

被引:2
|
作者
Janbain, Imad [1 ,2 ]
Deloffre, Julien [1 ]
Jardani, A. [1 ]
Vu, Minh Tan [1 ]
Massei, Nicolas [1 ]
机构
[1] Univ Caen Normandie, Univ Rouen Normandie, CNRS, UMR 6143,M2C,GeoDeepLearning Consortium, Rouen, France
[2] Univ Caen Normandie, Univ Rouen Normandie, CNRS, UMR 6143,M2C,GeoDeepLearning Consortium, 134 Ave Mont Riboudet, F-76000 Rouen, France
关键词
missing data imputation; hydrology; water level; River Seine; long short-term memory (LSTM); deep learning; machine learning; TIME-SERIES; IMPUTATION; MODELS; PREDICTION; ANN;
D O I
10.1080/02626667.2023.2221791
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
This paper aims to fill in the missing time series of hourly surface water levels of some stations installed along the River Seine, using the long short-term memory (LSTM) algorithm. In our study, only the water level data from the same station, containing many missing parts, were used as input and output variables, in contrast to other works where several features are available to take advantage of e.g. other station data/physical variables. A sensitive analysis is presented on both the network properties and how the input and output data are reentered to better determine the appropriate strategy. Numerous scenarios are presented, each an updated version of the previous one. Ultimately, the final version of the model can impute missing values of up to one year of hourly data with great flexibility (one-year Root-Mean-Square Error (RMSE) = 0.14 m) regardless of the location of the missing gaps in the series or their size.
引用
收藏
页码:1372 / 1390
页数:19
相关论文
共 50 条
  • [21] Investigation of Hyperparameter Setting of a Long Short-Term Memory Model Applied for Imputation of Missing Discharge Data of the Daihachiga River
    Weilisi, Toshiharu
    Kojima, Toshiharu
    WATER, 2022, 14 (02)
  • [22] A Long Short-Term Memory Network for Plasma Diagnosis from Langmuir Probe Data
    Wang, Jin
    Ji, Wenzhu
    Du, Qingfu
    Xing, Zanyang
    Xie, Xinyao
    Zhang, Qinghe
    SENSORS, 2022, 22 (11)
  • [23] Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
    Hunt, Kieran M. R.
    Matthews, Gwyneth R.
    Pappenberger, Florian
    Prudhomme, Christel
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2022, 26 (21) : 5449 - 5472
  • [24] PI-LSTM: Physics-informed long short-term memory network for structural response modeling
    Liu, Fangyu
    Li, Junlin
    Wang, Linbing
    ENGINEERING STRUCTURES, 2023, 292
  • [25] Water level prediction of Liuxihe Reservoir based on improved long short-term memory neural network
    Li, Youming
    Qu, Jia
    Zhang, Haosen
    Long, Yan
    Li, Shu
    WATER SUPPLY, 2023, 23 (11) : 4563 - 4582
  • [26] Seismic Data Reconstruction Using Deep Bidirectional Long Short-Term Memory With Skip Connections
    Yoon, Daeung
    Yeeh, Zeu
    Byun, Joongmoo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (07) : 1298 - 1302
  • [27] Performance Analysis of Long Short-Term Memory Predictive Neural Networks on Time Series Data
    Bolboaca, Roland
    Haller, Piroska
    MATHEMATICS, 2023, 11 (06)
  • [28] A hybrid convolutional neural network with long short-term memory for statistical arbitrage
    Eggebrecht, P.
    Luetkebohmert, E.
    QUANTITATIVE FINANCE, 2023, 23 (04) : 595 - 613
  • [29] Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) Power Forecasting
    Alsabban, Maha S.
    Salem, Nema
    Malik, Hebatullah M.
    APPEEC 2021: 2021 13TH IEEE PES ASIA PACIFIC POWER & ENERGY ENGINEERING CONFERENCE (APPEEC), 2021,
  • [30] Niederschlags-Abfluss-Modellierung mit Long Short-Term Memory (LSTM)Rainfall-Runoff modeling with Long Short-Term Memory Networks (LSTM)—an overview
    Frederik Kratzert
    Martin Gauch
    Grey Nearing
    Sepp Hochreiter
    Daniel Klotz
    Österreichische Wasser- und Abfallwirtschaft, 2021, 73 (7-8) : 270 - 280